Spaces:
Runtime error
Runtime error
Upload imagedream/ldm/modules/diffusionmodules/model.py with huggingface_hub
Browse files
imagedream/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from ..attention import MemoryEfficientCrossAttention
|
10 |
+
|
11 |
+
try:
|
12 |
+
import xformers
|
13 |
+
import xformers.ops
|
14 |
+
|
15 |
+
XFORMERS_IS_AVAILBLE = True
|
16 |
+
except:
|
17 |
+
XFORMERS_IS_AVAILBLE = False
|
18 |
+
print("No module 'xformers'. Proceeding without it.")
|
19 |
+
|
20 |
+
|
21 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
22 |
+
"""
|
23 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
24 |
+
From Fairseq.
|
25 |
+
Build sinusoidal embeddings.
|
26 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
27 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
28 |
+
"""
|
29 |
+
assert len(timesteps.shape) == 1
|
30 |
+
|
31 |
+
half_dim = embedding_dim // 2
|
32 |
+
emb = math.log(10000) / (half_dim - 1)
|
33 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
34 |
+
emb = emb.to(device=timesteps.device)
|
35 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
36 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
37 |
+
if embedding_dim % 2 == 1: # zero pad
|
38 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
39 |
+
return emb
|
40 |
+
|
41 |
+
|
42 |
+
def nonlinearity(x):
|
43 |
+
# swish
|
44 |
+
return x * torch.sigmoid(x)
|
45 |
+
|
46 |
+
|
47 |
+
def Normalize(in_channels, num_groups=32):
|
48 |
+
return torch.nn.GroupNorm(
|
49 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
class Upsample(nn.Module):
|
54 |
+
def __init__(self, in_channels, with_conv):
|
55 |
+
super().__init__()
|
56 |
+
self.with_conv = with_conv
|
57 |
+
if self.with_conv:
|
58 |
+
self.conv = torch.nn.Conv2d(
|
59 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
64 |
+
if self.with_conv:
|
65 |
+
x = self.conv(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
class Downsample(nn.Module):
|
70 |
+
def __init__(self, in_channels, with_conv):
|
71 |
+
super().__init__()
|
72 |
+
self.with_conv = with_conv
|
73 |
+
if self.with_conv:
|
74 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
75 |
+
self.conv = torch.nn.Conv2d(
|
76 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
77 |
+
)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
if self.with_conv:
|
81 |
+
pad = (0, 1, 0, 1)
|
82 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
83 |
+
x = self.conv(x)
|
84 |
+
else:
|
85 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
class ResnetBlock(nn.Module):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
*,
|
93 |
+
in_channels,
|
94 |
+
out_channels=None,
|
95 |
+
conv_shortcut=False,
|
96 |
+
dropout,
|
97 |
+
temb_channels=512,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
self.in_channels = in_channels
|
101 |
+
out_channels = in_channels if out_channels is None else out_channels
|
102 |
+
self.out_channels = out_channels
|
103 |
+
self.use_conv_shortcut = conv_shortcut
|
104 |
+
|
105 |
+
self.norm1 = Normalize(in_channels)
|
106 |
+
self.conv1 = torch.nn.Conv2d(
|
107 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
108 |
+
)
|
109 |
+
if temb_channels > 0:
|
110 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
111 |
+
self.norm2 = Normalize(out_channels)
|
112 |
+
self.dropout = torch.nn.Dropout(dropout)
|
113 |
+
self.conv2 = torch.nn.Conv2d(
|
114 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
115 |
+
)
|
116 |
+
if self.in_channels != self.out_channels:
|
117 |
+
if self.use_conv_shortcut:
|
118 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
119 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
123 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
124 |
+
)
|
125 |
+
|
126 |
+
def forward(self, x, temb):
|
127 |
+
h = x
|
128 |
+
h = self.norm1(h)
|
129 |
+
h = nonlinearity(h)
|
130 |
+
h = self.conv1(h)
|
131 |
+
|
132 |
+
if temb is not None:
|
133 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
134 |
+
|
135 |
+
h = self.norm2(h)
|
136 |
+
h = nonlinearity(h)
|
137 |
+
h = self.dropout(h)
|
138 |
+
h = self.conv2(h)
|
139 |
+
|
140 |
+
if self.in_channels != self.out_channels:
|
141 |
+
if self.use_conv_shortcut:
|
142 |
+
x = self.conv_shortcut(x)
|
143 |
+
else:
|
144 |
+
x = self.nin_shortcut(x)
|
145 |
+
|
146 |
+
return x + h
|
147 |
+
|
148 |
+
|
149 |
+
class AttnBlock(nn.Module):
|
150 |
+
def __init__(self, in_channels):
|
151 |
+
super().__init__()
|
152 |
+
self.in_channels = in_channels
|
153 |
+
|
154 |
+
self.norm = Normalize(in_channels)
|
155 |
+
self.q = torch.nn.Conv2d(
|
156 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
157 |
+
)
|
158 |
+
self.k = torch.nn.Conv2d(
|
159 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
160 |
+
)
|
161 |
+
self.v = torch.nn.Conv2d(
|
162 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
163 |
+
)
|
164 |
+
self.proj_out = torch.nn.Conv2d(
|
165 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
166 |
+
)
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
h_ = x
|
170 |
+
h_ = self.norm(h_)
|
171 |
+
q = self.q(h_)
|
172 |
+
k = self.k(h_)
|
173 |
+
v = self.v(h_)
|
174 |
+
|
175 |
+
# compute attention
|
176 |
+
b, c, h, w = q.shape
|
177 |
+
q = q.reshape(b, c, h * w)
|
178 |
+
q = q.permute(0, 2, 1) # b,hw,c
|
179 |
+
k = k.reshape(b, c, h * w) # b,c,hw
|
180 |
+
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
181 |
+
w_ = w_ * (int(c) ** (-0.5))
|
182 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
183 |
+
|
184 |
+
# attend to values
|
185 |
+
v = v.reshape(b, c, h * w)
|
186 |
+
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
187 |
+
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
188 |
+
h_ = h_.reshape(b, c, h, w)
|
189 |
+
|
190 |
+
h_ = self.proj_out(h_)
|
191 |
+
|
192 |
+
return x + h_
|
193 |
+
|
194 |
+
|
195 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
196 |
+
"""
|
197 |
+
Uses xformers efficient implementation,
|
198 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
199 |
+
Note: this is a single-head self-attention operation
|
200 |
+
"""
|
201 |
+
|
202 |
+
#
|
203 |
+
def __init__(self, in_channels):
|
204 |
+
super().__init__()
|
205 |
+
self.in_channels = in_channels
|
206 |
+
|
207 |
+
self.norm = Normalize(in_channels)
|
208 |
+
self.q = torch.nn.Conv2d(
|
209 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
210 |
+
)
|
211 |
+
self.k = torch.nn.Conv2d(
|
212 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
213 |
+
)
|
214 |
+
self.v = torch.nn.Conv2d(
|
215 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
216 |
+
)
|
217 |
+
self.proj_out = torch.nn.Conv2d(
|
218 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
219 |
+
)
|
220 |
+
self.attention_op: Optional[Any] = None
|
221 |
+
|
222 |
+
def forward(self, x):
|
223 |
+
h_ = x
|
224 |
+
h_ = self.norm(h_)
|
225 |
+
q = self.q(h_)
|
226 |
+
k = self.k(h_)
|
227 |
+
v = self.v(h_)
|
228 |
+
|
229 |
+
# compute attention
|
230 |
+
B, C, H, W = q.shape
|
231 |
+
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
|
232 |
+
|
233 |
+
q, k, v = map(
|
234 |
+
lambda t: t.unsqueeze(3)
|
235 |
+
.reshape(B, t.shape[1], 1, C)
|
236 |
+
.permute(0, 2, 1, 3)
|
237 |
+
.reshape(B * 1, t.shape[1], C)
|
238 |
+
.contiguous(),
|
239 |
+
(q, k, v),
|
240 |
+
)
|
241 |
+
out = xformers.ops.memory_efficient_attention(
|
242 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
243 |
+
)
|
244 |
+
|
245 |
+
out = (
|
246 |
+
out.unsqueeze(0)
|
247 |
+
.reshape(B, 1, out.shape[1], C)
|
248 |
+
.permute(0, 2, 1, 3)
|
249 |
+
.reshape(B, out.shape[1], C)
|
250 |
+
)
|
251 |
+
out = rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
|
252 |
+
out = self.proj_out(out)
|
253 |
+
return x + out
|
254 |
+
|
255 |
+
|
256 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
257 |
+
def forward(self, x, context=None, mask=None):
|
258 |
+
b, c, h, w = x.shape
|
259 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
260 |
+
out = super().forward(x, context=context, mask=mask)
|
261 |
+
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
|
262 |
+
return x + out
|
263 |
+
|
264 |
+
|
265 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
266 |
+
assert attn_type in [
|
267 |
+
"vanilla",
|
268 |
+
"vanilla-xformers",
|
269 |
+
"memory-efficient-cross-attn",
|
270 |
+
"linear",
|
271 |
+
"none",
|
272 |
+
], f"attn_type {attn_type} unknown"
|
273 |
+
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
274 |
+
attn_type = "vanilla-xformers"
|
275 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
276 |
+
if attn_type == "vanilla":
|
277 |
+
assert attn_kwargs is None
|
278 |
+
return AttnBlock(in_channels)
|
279 |
+
elif attn_type == "vanilla-xformers":
|
280 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
281 |
+
return MemoryEfficientAttnBlock(in_channels)
|
282 |
+
elif type == "memory-efficient-cross-attn":
|
283 |
+
attn_kwargs["query_dim"] = in_channels
|
284 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
285 |
+
elif attn_type == "none":
|
286 |
+
return nn.Identity(in_channels)
|
287 |
+
else:
|
288 |
+
raise NotImplementedError()
|
289 |
+
|
290 |
+
|
291 |
+
class Model(nn.Module):
|
292 |
+
def __init__(
|
293 |
+
self,
|
294 |
+
*,
|
295 |
+
ch,
|
296 |
+
out_ch,
|
297 |
+
ch_mult=(1, 2, 4, 8),
|
298 |
+
num_res_blocks,
|
299 |
+
attn_resolutions,
|
300 |
+
dropout=0.0,
|
301 |
+
resamp_with_conv=True,
|
302 |
+
in_channels,
|
303 |
+
resolution,
|
304 |
+
use_timestep=True,
|
305 |
+
use_linear_attn=False,
|
306 |
+
attn_type="vanilla",
|
307 |
+
):
|
308 |
+
super().__init__()
|
309 |
+
if use_linear_attn:
|
310 |
+
attn_type = "linear"
|
311 |
+
self.ch = ch
|
312 |
+
self.temb_ch = self.ch * 4
|
313 |
+
self.num_resolutions = len(ch_mult)
|
314 |
+
self.num_res_blocks = num_res_blocks
|
315 |
+
self.resolution = resolution
|
316 |
+
self.in_channels = in_channels
|
317 |
+
|
318 |
+
self.use_timestep = use_timestep
|
319 |
+
if self.use_timestep:
|
320 |
+
# timestep embedding
|
321 |
+
self.temb = nn.Module()
|
322 |
+
self.temb.dense = nn.ModuleList(
|
323 |
+
[
|
324 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
325 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
326 |
+
]
|
327 |
+
)
|
328 |
+
|
329 |
+
# downsampling
|
330 |
+
self.conv_in = torch.nn.Conv2d(
|
331 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
332 |
+
)
|
333 |
+
|
334 |
+
curr_res = resolution
|
335 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
336 |
+
self.down = nn.ModuleList()
|
337 |
+
for i_level in range(self.num_resolutions):
|
338 |
+
block = nn.ModuleList()
|
339 |
+
attn = nn.ModuleList()
|
340 |
+
block_in = ch * in_ch_mult[i_level]
|
341 |
+
block_out = ch * ch_mult[i_level]
|
342 |
+
for i_block in range(self.num_res_blocks):
|
343 |
+
block.append(
|
344 |
+
ResnetBlock(
|
345 |
+
in_channels=block_in,
|
346 |
+
out_channels=block_out,
|
347 |
+
temb_channels=self.temb_ch,
|
348 |
+
dropout=dropout,
|
349 |
+
)
|
350 |
+
)
|
351 |
+
block_in = block_out
|
352 |
+
if curr_res in attn_resolutions:
|
353 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
354 |
+
down = nn.Module()
|
355 |
+
down.block = block
|
356 |
+
down.attn = attn
|
357 |
+
if i_level != self.num_resolutions - 1:
|
358 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
359 |
+
curr_res = curr_res // 2
|
360 |
+
self.down.append(down)
|
361 |
+
|
362 |
+
# middle
|
363 |
+
self.mid = nn.Module()
|
364 |
+
self.mid.block_1 = ResnetBlock(
|
365 |
+
in_channels=block_in,
|
366 |
+
out_channels=block_in,
|
367 |
+
temb_channels=self.temb_ch,
|
368 |
+
dropout=dropout,
|
369 |
+
)
|
370 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
371 |
+
self.mid.block_2 = ResnetBlock(
|
372 |
+
in_channels=block_in,
|
373 |
+
out_channels=block_in,
|
374 |
+
temb_channels=self.temb_ch,
|
375 |
+
dropout=dropout,
|
376 |
+
)
|
377 |
+
|
378 |
+
# upsampling
|
379 |
+
self.up = nn.ModuleList()
|
380 |
+
for i_level in reversed(range(self.num_resolutions)):
|
381 |
+
block = nn.ModuleList()
|
382 |
+
attn = nn.ModuleList()
|
383 |
+
block_out = ch * ch_mult[i_level]
|
384 |
+
skip_in = ch * ch_mult[i_level]
|
385 |
+
for i_block in range(self.num_res_blocks + 1):
|
386 |
+
if i_block == self.num_res_blocks:
|
387 |
+
skip_in = ch * in_ch_mult[i_level]
|
388 |
+
block.append(
|
389 |
+
ResnetBlock(
|
390 |
+
in_channels=block_in + skip_in,
|
391 |
+
out_channels=block_out,
|
392 |
+
temb_channels=self.temb_ch,
|
393 |
+
dropout=dropout,
|
394 |
+
)
|
395 |
+
)
|
396 |
+
block_in = block_out
|
397 |
+
if curr_res in attn_resolutions:
|
398 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
399 |
+
up = nn.Module()
|
400 |
+
up.block = block
|
401 |
+
up.attn = attn
|
402 |
+
if i_level != 0:
|
403 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
404 |
+
curr_res = curr_res * 2
|
405 |
+
self.up.insert(0, up) # prepend to get consistent order
|
406 |
+
|
407 |
+
# end
|
408 |
+
self.norm_out = Normalize(block_in)
|
409 |
+
self.conv_out = torch.nn.Conv2d(
|
410 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
411 |
+
)
|
412 |
+
|
413 |
+
def forward(self, x, t=None, context=None):
|
414 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
415 |
+
if context is not None:
|
416 |
+
# assume aligned context, cat along channel axis
|
417 |
+
x = torch.cat((x, context), dim=1)
|
418 |
+
if self.use_timestep:
|
419 |
+
# timestep embedding
|
420 |
+
assert t is not None
|
421 |
+
temb = get_timestep_embedding(t, self.ch)
|
422 |
+
temb = self.temb.dense[0](temb)
|
423 |
+
temb = nonlinearity(temb)
|
424 |
+
temb = self.temb.dense[1](temb)
|
425 |
+
else:
|
426 |
+
temb = None
|
427 |
+
|
428 |
+
# downsampling
|
429 |
+
hs = [self.conv_in(x)]
|
430 |
+
for i_level in range(self.num_resolutions):
|
431 |
+
for i_block in range(self.num_res_blocks):
|
432 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
433 |
+
if len(self.down[i_level].attn) > 0:
|
434 |
+
h = self.down[i_level].attn[i_block](h)
|
435 |
+
hs.append(h)
|
436 |
+
if i_level != self.num_resolutions - 1:
|
437 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
438 |
+
|
439 |
+
# middle
|
440 |
+
h = hs[-1]
|
441 |
+
h = self.mid.block_1(h, temb)
|
442 |
+
h = self.mid.attn_1(h)
|
443 |
+
h = self.mid.block_2(h, temb)
|
444 |
+
|
445 |
+
# upsampling
|
446 |
+
for i_level in reversed(range(self.num_resolutions)):
|
447 |
+
for i_block in range(self.num_res_blocks + 1):
|
448 |
+
h = self.up[i_level].block[i_block](
|
449 |
+
torch.cat([h, hs.pop()], dim=1), temb
|
450 |
+
)
|
451 |
+
if len(self.up[i_level].attn) > 0:
|
452 |
+
h = self.up[i_level].attn[i_block](h)
|
453 |
+
if i_level != 0:
|
454 |
+
h = self.up[i_level].upsample(h)
|
455 |
+
|
456 |
+
# end
|
457 |
+
h = self.norm_out(h)
|
458 |
+
h = nonlinearity(h)
|
459 |
+
h = self.conv_out(h)
|
460 |
+
return h
|
461 |
+
|
462 |
+
def get_last_layer(self):
|
463 |
+
return self.conv_out.weight
|
464 |
+
|
465 |
+
|
466 |
+
class Encoder(nn.Module):
|
467 |
+
def __init__(
|
468 |
+
self,
|
469 |
+
*,
|
470 |
+
ch,
|
471 |
+
out_ch,
|
472 |
+
ch_mult=(1, 2, 4, 8),
|
473 |
+
num_res_blocks,
|
474 |
+
attn_resolutions,
|
475 |
+
dropout=0.0,
|
476 |
+
resamp_with_conv=True,
|
477 |
+
in_channels,
|
478 |
+
resolution,
|
479 |
+
z_channels,
|
480 |
+
double_z=True,
|
481 |
+
use_linear_attn=False,
|
482 |
+
attn_type="vanilla",
|
483 |
+
**ignore_kwargs,
|
484 |
+
):
|
485 |
+
super().__init__()
|
486 |
+
if use_linear_attn:
|
487 |
+
attn_type = "linear"
|
488 |
+
self.ch = ch
|
489 |
+
self.temb_ch = 0
|
490 |
+
self.num_resolutions = len(ch_mult)
|
491 |
+
self.num_res_blocks = num_res_blocks
|
492 |
+
self.resolution = resolution
|
493 |
+
self.in_channels = in_channels
|
494 |
+
|
495 |
+
# downsampling
|
496 |
+
self.conv_in = torch.nn.Conv2d(
|
497 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
498 |
+
)
|
499 |
+
|
500 |
+
curr_res = resolution
|
501 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
502 |
+
self.in_ch_mult = in_ch_mult
|
503 |
+
self.down = nn.ModuleList()
|
504 |
+
for i_level in range(self.num_resolutions):
|
505 |
+
block = nn.ModuleList()
|
506 |
+
attn = nn.ModuleList()
|
507 |
+
block_in = ch * in_ch_mult[i_level]
|
508 |
+
block_out = ch * ch_mult[i_level]
|
509 |
+
for i_block in range(self.num_res_blocks):
|
510 |
+
block.append(
|
511 |
+
ResnetBlock(
|
512 |
+
in_channels=block_in,
|
513 |
+
out_channels=block_out,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout,
|
516 |
+
)
|
517 |
+
)
|
518 |
+
block_in = block_out
|
519 |
+
if curr_res in attn_resolutions:
|
520 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
521 |
+
down = nn.Module()
|
522 |
+
down.block = block
|
523 |
+
down.attn = attn
|
524 |
+
if i_level != self.num_resolutions - 1:
|
525 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
526 |
+
curr_res = curr_res // 2
|
527 |
+
self.down.append(down)
|
528 |
+
|
529 |
+
# middle
|
530 |
+
self.mid = nn.Module()
|
531 |
+
self.mid.block_1 = ResnetBlock(
|
532 |
+
in_channels=block_in,
|
533 |
+
out_channels=block_in,
|
534 |
+
temb_channels=self.temb_ch,
|
535 |
+
dropout=dropout,
|
536 |
+
)
|
537 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
538 |
+
self.mid.block_2 = ResnetBlock(
|
539 |
+
in_channels=block_in,
|
540 |
+
out_channels=block_in,
|
541 |
+
temb_channels=self.temb_ch,
|
542 |
+
dropout=dropout,
|
543 |
+
)
|
544 |
+
|
545 |
+
# end
|
546 |
+
self.norm_out = Normalize(block_in)
|
547 |
+
self.conv_out = torch.nn.Conv2d(
|
548 |
+
block_in,
|
549 |
+
2 * z_channels if double_z else z_channels,
|
550 |
+
kernel_size=3,
|
551 |
+
stride=1,
|
552 |
+
padding=1,
|
553 |
+
)
|
554 |
+
|
555 |
+
def forward(self, x):
|
556 |
+
# timestep embedding
|
557 |
+
temb = None
|
558 |
+
|
559 |
+
# downsampling
|
560 |
+
hs = [self.conv_in(x)]
|
561 |
+
for i_level in range(self.num_resolutions):
|
562 |
+
for i_block in range(self.num_res_blocks):
|
563 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
564 |
+
if len(self.down[i_level].attn) > 0:
|
565 |
+
h = self.down[i_level].attn[i_block](h)
|
566 |
+
hs.append(h)
|
567 |
+
if i_level != self.num_resolutions - 1:
|
568 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
569 |
+
|
570 |
+
# middle
|
571 |
+
h = hs[-1]
|
572 |
+
h = self.mid.block_1(h, temb)
|
573 |
+
h = self.mid.attn_1(h)
|
574 |
+
h = self.mid.block_2(h, temb)
|
575 |
+
|
576 |
+
# end
|
577 |
+
h = self.norm_out(h)
|
578 |
+
h = nonlinearity(h)
|
579 |
+
h = self.conv_out(h)
|
580 |
+
return h
|
581 |
+
|
582 |
+
|
583 |
+
class Decoder(nn.Module):
|
584 |
+
def __init__(
|
585 |
+
self,
|
586 |
+
*,
|
587 |
+
ch,
|
588 |
+
out_ch,
|
589 |
+
ch_mult=(1, 2, 4, 8),
|
590 |
+
num_res_blocks,
|
591 |
+
attn_resolutions,
|
592 |
+
dropout=0.0,
|
593 |
+
resamp_with_conv=True,
|
594 |
+
in_channels,
|
595 |
+
resolution,
|
596 |
+
z_channels,
|
597 |
+
give_pre_end=False,
|
598 |
+
tanh_out=False,
|
599 |
+
use_linear_attn=False,
|
600 |
+
attn_type="vanilla",
|
601 |
+
**ignorekwargs,
|
602 |
+
):
|
603 |
+
super().__init__()
|
604 |
+
if use_linear_attn:
|
605 |
+
attn_type = "linear"
|
606 |
+
self.ch = ch
|
607 |
+
self.temb_ch = 0
|
608 |
+
self.num_resolutions = len(ch_mult)
|
609 |
+
self.num_res_blocks = num_res_blocks
|
610 |
+
self.resolution = resolution
|
611 |
+
self.in_channels = in_channels
|
612 |
+
self.give_pre_end = give_pre_end
|
613 |
+
self.tanh_out = tanh_out
|
614 |
+
|
615 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
616 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
617 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
618 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
619 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
620 |
+
print(
|
621 |
+
"Working with z of shape {} = {} dimensions.".format(
|
622 |
+
self.z_shape, np.prod(self.z_shape)
|
623 |
+
)
|
624 |
+
)
|
625 |
+
|
626 |
+
# z to block_in
|
627 |
+
self.conv_in = torch.nn.Conv2d(
|
628 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
629 |
+
)
|
630 |
+
|
631 |
+
# middle
|
632 |
+
self.mid = nn.Module()
|
633 |
+
self.mid.block_1 = ResnetBlock(
|
634 |
+
in_channels=block_in,
|
635 |
+
out_channels=block_in,
|
636 |
+
temb_channels=self.temb_ch,
|
637 |
+
dropout=dropout,
|
638 |
+
)
|
639 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
640 |
+
self.mid.block_2 = ResnetBlock(
|
641 |
+
in_channels=block_in,
|
642 |
+
out_channels=block_in,
|
643 |
+
temb_channels=self.temb_ch,
|
644 |
+
dropout=dropout,
|
645 |
+
)
|
646 |
+
|
647 |
+
# upsampling
|
648 |
+
self.up = nn.ModuleList()
|
649 |
+
for i_level in reversed(range(self.num_resolutions)):
|
650 |
+
block = nn.ModuleList()
|
651 |
+
attn = nn.ModuleList()
|
652 |
+
block_out = ch * ch_mult[i_level]
|
653 |
+
for i_block in range(self.num_res_blocks + 1):
|
654 |
+
block.append(
|
655 |
+
ResnetBlock(
|
656 |
+
in_channels=block_in,
|
657 |
+
out_channels=block_out,
|
658 |
+
temb_channels=self.temb_ch,
|
659 |
+
dropout=dropout,
|
660 |
+
)
|
661 |
+
)
|
662 |
+
block_in = block_out
|
663 |
+
if curr_res in attn_resolutions:
|
664 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
665 |
+
up = nn.Module()
|
666 |
+
up.block = block
|
667 |
+
up.attn = attn
|
668 |
+
if i_level != 0:
|
669 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
670 |
+
curr_res = curr_res * 2
|
671 |
+
self.up.insert(0, up) # prepend to get consistent order
|
672 |
+
|
673 |
+
# end
|
674 |
+
self.norm_out = Normalize(block_in)
|
675 |
+
self.conv_out = torch.nn.Conv2d(
|
676 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
677 |
+
)
|
678 |
+
|
679 |
+
def forward(self, z):
|
680 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
681 |
+
self.last_z_shape = z.shape
|
682 |
+
|
683 |
+
# timestep embedding
|
684 |
+
temb = None
|
685 |
+
|
686 |
+
# z to block_in
|
687 |
+
h = self.conv_in(z)
|
688 |
+
|
689 |
+
# middle
|
690 |
+
h = self.mid.block_1(h, temb)
|
691 |
+
h = self.mid.attn_1(h)
|
692 |
+
h = self.mid.block_2(h, temb)
|
693 |
+
|
694 |
+
# upsampling
|
695 |
+
for i_level in reversed(range(self.num_resolutions)):
|
696 |
+
for i_block in range(self.num_res_blocks + 1):
|
697 |
+
h = self.up[i_level].block[i_block](h, temb)
|
698 |
+
if len(self.up[i_level].attn) > 0:
|
699 |
+
h = self.up[i_level].attn[i_block](h)
|
700 |
+
if i_level != 0:
|
701 |
+
h = self.up[i_level].upsample(h)
|
702 |
+
|
703 |
+
# end
|
704 |
+
if self.give_pre_end:
|
705 |
+
return h
|
706 |
+
|
707 |
+
h = self.norm_out(h)
|
708 |
+
h = nonlinearity(h)
|
709 |
+
h = self.conv_out(h)
|
710 |
+
if self.tanh_out:
|
711 |
+
h = torch.tanh(h)
|
712 |
+
return h
|
713 |
+
|
714 |
+
|
715 |
+
class SimpleDecoder(nn.Module):
|
716 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
717 |
+
super().__init__()
|
718 |
+
self.model = nn.ModuleList(
|
719 |
+
[
|
720 |
+
nn.Conv2d(in_channels, in_channels, 1),
|
721 |
+
ResnetBlock(
|
722 |
+
in_channels=in_channels,
|
723 |
+
out_channels=2 * in_channels,
|
724 |
+
temb_channels=0,
|
725 |
+
dropout=0.0,
|
726 |
+
),
|
727 |
+
ResnetBlock(
|
728 |
+
in_channels=2 * in_channels,
|
729 |
+
out_channels=4 * in_channels,
|
730 |
+
temb_channels=0,
|
731 |
+
dropout=0.0,
|
732 |
+
),
|
733 |
+
ResnetBlock(
|
734 |
+
in_channels=4 * in_channels,
|
735 |
+
out_channels=2 * in_channels,
|
736 |
+
temb_channels=0,
|
737 |
+
dropout=0.0,
|
738 |
+
),
|
739 |
+
nn.Conv2d(2 * in_channels, in_channels, 1),
|
740 |
+
Upsample(in_channels, with_conv=True),
|
741 |
+
]
|
742 |
+
)
|
743 |
+
# end
|
744 |
+
self.norm_out = Normalize(in_channels)
|
745 |
+
self.conv_out = torch.nn.Conv2d(
|
746 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
747 |
+
)
|
748 |
+
|
749 |
+
def forward(self, x):
|
750 |
+
for i, layer in enumerate(self.model):
|
751 |
+
if i in [1, 2, 3]:
|
752 |
+
x = layer(x, None)
|
753 |
+
else:
|
754 |
+
x = layer(x)
|
755 |
+
|
756 |
+
h = self.norm_out(x)
|
757 |
+
h = nonlinearity(h)
|
758 |
+
x = self.conv_out(h)
|
759 |
+
return x
|
760 |
+
|
761 |
+
|
762 |
+
class UpsampleDecoder(nn.Module):
|
763 |
+
def __init__(
|
764 |
+
self,
|
765 |
+
in_channels,
|
766 |
+
out_channels,
|
767 |
+
ch,
|
768 |
+
num_res_blocks,
|
769 |
+
resolution,
|
770 |
+
ch_mult=(2, 2),
|
771 |
+
dropout=0.0,
|
772 |
+
):
|
773 |
+
super().__init__()
|
774 |
+
# upsampling
|
775 |
+
self.temb_ch = 0
|
776 |
+
self.num_resolutions = len(ch_mult)
|
777 |
+
self.num_res_blocks = num_res_blocks
|
778 |
+
block_in = in_channels
|
779 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
780 |
+
self.res_blocks = nn.ModuleList()
|
781 |
+
self.upsample_blocks = nn.ModuleList()
|
782 |
+
for i_level in range(self.num_resolutions):
|
783 |
+
res_block = []
|
784 |
+
block_out = ch * ch_mult[i_level]
|
785 |
+
for i_block in range(self.num_res_blocks + 1):
|
786 |
+
res_block.append(
|
787 |
+
ResnetBlock(
|
788 |
+
in_channels=block_in,
|
789 |
+
out_channels=block_out,
|
790 |
+
temb_channels=self.temb_ch,
|
791 |
+
dropout=dropout,
|
792 |
+
)
|
793 |
+
)
|
794 |
+
block_in = block_out
|
795 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
796 |
+
if i_level != self.num_resolutions - 1:
|
797 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
798 |
+
curr_res = curr_res * 2
|
799 |
+
|
800 |
+
# end
|
801 |
+
self.norm_out = Normalize(block_in)
|
802 |
+
self.conv_out = torch.nn.Conv2d(
|
803 |
+
block_in, out_channels, kernel_size=3, stride=1, padding=1
|
804 |
+
)
|
805 |
+
|
806 |
+
def forward(self, x):
|
807 |
+
# upsampling
|
808 |
+
h = x
|
809 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
810 |
+
for i_block in range(self.num_res_blocks + 1):
|
811 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
812 |
+
if i_level != self.num_resolutions - 1:
|
813 |
+
h = self.upsample_blocks[k](h)
|
814 |
+
h = self.norm_out(h)
|
815 |
+
h = nonlinearity(h)
|
816 |
+
h = self.conv_out(h)
|
817 |
+
return h
|
818 |
+
|
819 |
+
|
820 |
+
class LatentRescaler(nn.Module):
|
821 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
822 |
+
super().__init__()
|
823 |
+
# residual block, interpolate, residual block
|
824 |
+
self.factor = factor
|
825 |
+
self.conv_in = nn.Conv2d(
|
826 |
+
in_channels, mid_channels, kernel_size=3, stride=1, padding=1
|
827 |
+
)
|
828 |
+
self.res_block1 = nn.ModuleList(
|
829 |
+
[
|
830 |
+
ResnetBlock(
|
831 |
+
in_channels=mid_channels,
|
832 |
+
out_channels=mid_channels,
|
833 |
+
temb_channels=0,
|
834 |
+
dropout=0.0,
|
835 |
+
)
|
836 |
+
for _ in range(depth)
|
837 |
+
]
|
838 |
+
)
|
839 |
+
self.attn = AttnBlock(mid_channels)
|
840 |
+
self.res_block2 = nn.ModuleList(
|
841 |
+
[
|
842 |
+
ResnetBlock(
|
843 |
+
in_channels=mid_channels,
|
844 |
+
out_channels=mid_channels,
|
845 |
+
temb_channels=0,
|
846 |
+
dropout=0.0,
|
847 |
+
)
|
848 |
+
for _ in range(depth)
|
849 |
+
]
|
850 |
+
)
|
851 |
+
|
852 |
+
self.conv_out = nn.Conv2d(
|
853 |
+
mid_channels,
|
854 |
+
out_channels,
|
855 |
+
kernel_size=1,
|
856 |
+
)
|
857 |
+
|
858 |
+
def forward(self, x):
|
859 |
+
x = self.conv_in(x)
|
860 |
+
for block in self.res_block1:
|
861 |
+
x = block(x, None)
|
862 |
+
x = torch.nn.functional.interpolate(
|
863 |
+
x,
|
864 |
+
size=(
|
865 |
+
int(round(x.shape[2] * self.factor)),
|
866 |
+
int(round(x.shape[3] * self.factor)),
|
867 |
+
),
|
868 |
+
)
|
869 |
+
x = self.attn(x)
|
870 |
+
for block in self.res_block2:
|
871 |
+
x = block(x, None)
|
872 |
+
x = self.conv_out(x)
|
873 |
+
return x
|
874 |
+
|
875 |
+
|
876 |
+
class MergedRescaleEncoder(nn.Module):
|
877 |
+
def __init__(
|
878 |
+
self,
|
879 |
+
in_channels,
|
880 |
+
ch,
|
881 |
+
resolution,
|
882 |
+
out_ch,
|
883 |
+
num_res_blocks,
|
884 |
+
attn_resolutions,
|
885 |
+
dropout=0.0,
|
886 |
+
resamp_with_conv=True,
|
887 |
+
ch_mult=(1, 2, 4, 8),
|
888 |
+
rescale_factor=1.0,
|
889 |
+
rescale_module_depth=1,
|
890 |
+
):
|
891 |
+
super().__init__()
|
892 |
+
intermediate_chn = ch * ch_mult[-1]
|
893 |
+
self.encoder = Encoder(
|
894 |
+
in_channels=in_channels,
|
895 |
+
num_res_blocks=num_res_blocks,
|
896 |
+
ch=ch,
|
897 |
+
ch_mult=ch_mult,
|
898 |
+
z_channels=intermediate_chn,
|
899 |
+
double_z=False,
|
900 |
+
resolution=resolution,
|
901 |
+
attn_resolutions=attn_resolutions,
|
902 |
+
dropout=dropout,
|
903 |
+
resamp_with_conv=resamp_with_conv,
|
904 |
+
out_ch=None,
|
905 |
+
)
|
906 |
+
self.rescaler = LatentRescaler(
|
907 |
+
factor=rescale_factor,
|
908 |
+
in_channels=intermediate_chn,
|
909 |
+
mid_channels=intermediate_chn,
|
910 |
+
out_channels=out_ch,
|
911 |
+
depth=rescale_module_depth,
|
912 |
+
)
|
913 |
+
|
914 |
+
def forward(self, x):
|
915 |
+
x = self.encoder(x)
|
916 |
+
x = self.rescaler(x)
|
917 |
+
return x
|
918 |
+
|
919 |
+
|
920 |
+
class MergedRescaleDecoder(nn.Module):
|
921 |
+
def __init__(
|
922 |
+
self,
|
923 |
+
z_channels,
|
924 |
+
out_ch,
|
925 |
+
resolution,
|
926 |
+
num_res_blocks,
|
927 |
+
attn_resolutions,
|
928 |
+
ch,
|
929 |
+
ch_mult=(1, 2, 4, 8),
|
930 |
+
dropout=0.0,
|
931 |
+
resamp_with_conv=True,
|
932 |
+
rescale_factor=1.0,
|
933 |
+
rescale_module_depth=1,
|
934 |
+
):
|
935 |
+
super().__init__()
|
936 |
+
tmp_chn = z_channels * ch_mult[-1]
|
937 |
+
self.decoder = Decoder(
|
938 |
+
out_ch=out_ch,
|
939 |
+
z_channels=tmp_chn,
|
940 |
+
attn_resolutions=attn_resolutions,
|
941 |
+
dropout=dropout,
|
942 |
+
resamp_with_conv=resamp_with_conv,
|
943 |
+
in_channels=None,
|
944 |
+
num_res_blocks=num_res_blocks,
|
945 |
+
ch_mult=ch_mult,
|
946 |
+
resolution=resolution,
|
947 |
+
ch=ch,
|
948 |
+
)
|
949 |
+
self.rescaler = LatentRescaler(
|
950 |
+
factor=rescale_factor,
|
951 |
+
in_channels=z_channels,
|
952 |
+
mid_channels=tmp_chn,
|
953 |
+
out_channels=tmp_chn,
|
954 |
+
depth=rescale_module_depth,
|
955 |
+
)
|
956 |
+
|
957 |
+
def forward(self, x):
|
958 |
+
x = self.rescaler(x)
|
959 |
+
x = self.decoder(x)
|
960 |
+
return x
|
961 |
+
|
962 |
+
|
963 |
+
class Upsampler(nn.Module):
|
964 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
965 |
+
super().__init__()
|
966 |
+
assert out_size >= in_size
|
967 |
+
num_blocks = int(np.log2(out_size // in_size)) + 1
|
968 |
+
factor_up = 1.0 + (out_size % in_size)
|
969 |
+
print(
|
970 |
+
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
|
971 |
+
)
|
972 |
+
self.rescaler = LatentRescaler(
|
973 |
+
factor=factor_up,
|
974 |
+
in_channels=in_channels,
|
975 |
+
mid_channels=2 * in_channels,
|
976 |
+
out_channels=in_channels,
|
977 |
+
)
|
978 |
+
self.decoder = Decoder(
|
979 |
+
out_ch=out_channels,
|
980 |
+
resolution=out_size,
|
981 |
+
z_channels=in_channels,
|
982 |
+
num_res_blocks=2,
|
983 |
+
attn_resolutions=[],
|
984 |
+
in_channels=None,
|
985 |
+
ch=in_channels,
|
986 |
+
ch_mult=[ch_mult for _ in range(num_blocks)],
|
987 |
+
)
|
988 |
+
|
989 |
+
def forward(self, x):
|
990 |
+
x = self.rescaler(x)
|
991 |
+
x = self.decoder(x)
|
992 |
+
return x
|
993 |
+
|
994 |
+
|
995 |
+
class Resize(nn.Module):
|
996 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
997 |
+
super().__init__()
|
998 |
+
self.with_conv = learned
|
999 |
+
self.mode = mode
|
1000 |
+
if self.with_conv:
|
1001 |
+
print(
|
1002 |
+
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
|
1003 |
+
)
|
1004 |
+
raise NotImplementedError()
|
1005 |
+
assert in_channels is not None
|
1006 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
1007 |
+
self.conv = torch.nn.Conv2d(
|
1008 |
+
in_channels, in_channels, kernel_size=4, stride=2, padding=1
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
def forward(self, x, scale_factor=1.0):
|
1012 |
+
if scale_factor == 1.0:
|
1013 |
+
return x
|
1014 |
+
else:
|
1015 |
+
x = torch.nn.functional.interpolate(
|
1016 |
+
x, mode=self.mode, align_corners=False, scale_factor=scale_factor
|
1017 |
+
)
|
1018 |
+
return x
|