Spaces:
Runtime error
Runtime error
Upload imagedream/ldm/modules/attention.py with huggingface_hub
Browse files
imagedream/ldm/modules/attention.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from .diffusionmodules.util import checkpoint
|
10 |
+
|
11 |
+
|
12 |
+
try:
|
13 |
+
import xformers
|
14 |
+
import xformers.ops
|
15 |
+
|
16 |
+
XFORMERS_IS_AVAILBLE = True
|
17 |
+
except:
|
18 |
+
XFORMERS_IS_AVAILBLE = False
|
19 |
+
|
20 |
+
# CrossAttn precision handling
|
21 |
+
import os
|
22 |
+
|
23 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
24 |
+
|
25 |
+
|
26 |
+
def exists(val):
|
27 |
+
return val is not None
|
28 |
+
|
29 |
+
|
30 |
+
def uniq(arr):
|
31 |
+
return {el: True for el in arr}.keys()
|
32 |
+
|
33 |
+
|
34 |
+
def default(val, d):
|
35 |
+
if exists(val):
|
36 |
+
return val
|
37 |
+
return d() if isfunction(d) else d
|
38 |
+
|
39 |
+
|
40 |
+
def max_neg_value(t):
|
41 |
+
return -torch.finfo(t.dtype).max
|
42 |
+
|
43 |
+
|
44 |
+
def init_(tensor):
|
45 |
+
dim = tensor.shape[-1]
|
46 |
+
std = 1 / math.sqrt(dim)
|
47 |
+
tensor.uniform_(-std, std)
|
48 |
+
return tensor
|
49 |
+
|
50 |
+
|
51 |
+
# feedforward
|
52 |
+
class GEGLU(nn.Module):
|
53 |
+
def __init__(self, dim_in, dim_out):
|
54 |
+
super().__init__()
|
55 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
59 |
+
return x * F.gelu(gate)
|
60 |
+
|
61 |
+
|
62 |
+
class FeedForward(nn.Module):
|
63 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
64 |
+
super().__init__()
|
65 |
+
inner_dim = int(dim * mult)
|
66 |
+
dim_out = default(dim_out, dim)
|
67 |
+
project_in = (
|
68 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
69 |
+
if not glu
|
70 |
+
else GEGLU(dim, inner_dim)
|
71 |
+
)
|
72 |
+
|
73 |
+
self.net = nn.Sequential(
|
74 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
return self.net(x)
|
79 |
+
|
80 |
+
|
81 |
+
def zero_module(module):
|
82 |
+
"""
|
83 |
+
Zero out the parameters of a module and return it.
|
84 |
+
"""
|
85 |
+
for p in module.parameters():
|
86 |
+
p.detach().zero_()
|
87 |
+
return module
|
88 |
+
|
89 |
+
|
90 |
+
def Normalize(in_channels):
|
91 |
+
return torch.nn.GroupNorm(
|
92 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
class SpatialSelfAttention(nn.Module):
|
97 |
+
def __init__(self, in_channels):
|
98 |
+
super().__init__()
|
99 |
+
self.in_channels = in_channels
|
100 |
+
|
101 |
+
self.norm = Normalize(in_channels)
|
102 |
+
self.q = torch.nn.Conv2d(
|
103 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
104 |
+
)
|
105 |
+
self.k = torch.nn.Conv2d(
|
106 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
107 |
+
)
|
108 |
+
self.v = torch.nn.Conv2d(
|
109 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
110 |
+
)
|
111 |
+
self.proj_out = torch.nn.Conv2d(
|
112 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
113 |
+
)
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
h_ = x
|
117 |
+
h_ = self.norm(h_)
|
118 |
+
q = self.q(h_)
|
119 |
+
k = self.k(h_)
|
120 |
+
v = self.v(h_)
|
121 |
+
|
122 |
+
# compute attention
|
123 |
+
b, c, h, w = q.shape
|
124 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
125 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
126 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
127 |
+
|
128 |
+
w_ = w_ * (int(c) ** (-0.5))
|
129 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
130 |
+
|
131 |
+
# attend to values
|
132 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
133 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
134 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
135 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
136 |
+
h_ = self.proj_out(h_)
|
137 |
+
|
138 |
+
return x + h_
|
139 |
+
|
140 |
+
|
141 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
142 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
143 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs):
|
144 |
+
super().__init__()
|
145 |
+
print(
|
146 |
+
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
147 |
+
f"{heads} heads."
|
148 |
+
)
|
149 |
+
inner_dim = dim_head * heads
|
150 |
+
context_dim = default(context_dim, query_dim)
|
151 |
+
|
152 |
+
self.heads = heads
|
153 |
+
self.dim_head = dim_head
|
154 |
+
|
155 |
+
self.with_ip = kwargs.get("with_ip", False)
|
156 |
+
if self.with_ip and (context_dim is not None):
|
157 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
158 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
159 |
+
self.ip_dim= kwargs.get("ip_dim", 16)
|
160 |
+
self.ip_weight = kwargs.get("ip_weight", 1.0)
|
161 |
+
|
162 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
163 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
165 |
+
|
166 |
+
self.to_out = nn.Sequential(
|
167 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
168 |
+
)
|
169 |
+
self.attention_op: Optional[Any] = None
|
170 |
+
|
171 |
+
def forward(self, x, context=None, mask=None):
|
172 |
+
q = self.to_q(x)
|
173 |
+
|
174 |
+
has_ip = self.with_ip and (context is not None)
|
175 |
+
if has_ip:
|
176 |
+
# context dim [(b frame_num), (77 + img_token), 1024]
|
177 |
+
token_len = context.shape[1]
|
178 |
+
context_ip = context[:, -self.ip_dim:, :]
|
179 |
+
k_ip = self.to_k_ip(context_ip)
|
180 |
+
v_ip = self.to_v_ip(context_ip)
|
181 |
+
context = context[:, :(token_len - self.ip_dim), :]
|
182 |
+
|
183 |
+
context = default(context, x)
|
184 |
+
k = self.to_k(context)
|
185 |
+
v = self.to_v(context)
|
186 |
+
|
187 |
+
b, _, _ = q.shape
|
188 |
+
q, k, v = map(
|
189 |
+
lambda t: t.unsqueeze(3)
|
190 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
191 |
+
.permute(0, 2, 1, 3)
|
192 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
193 |
+
.contiguous(),
|
194 |
+
(q, k, v),
|
195 |
+
)
|
196 |
+
|
197 |
+
# actually compute the attention, what we cannot get enough of
|
198 |
+
out = xformers.ops.memory_efficient_attention(
|
199 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
200 |
+
)
|
201 |
+
|
202 |
+
if has_ip:
|
203 |
+
k_ip, v_ip = map(
|
204 |
+
lambda t: t.unsqueeze(3)
|
205 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
206 |
+
.permute(0, 2, 1, 3)
|
207 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
208 |
+
.contiguous(),
|
209 |
+
(k_ip, v_ip),
|
210 |
+
)
|
211 |
+
# actually compute the attention, what we cannot get enough of
|
212 |
+
out_ip = xformers.ops.memory_efficient_attention(
|
213 |
+
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
|
214 |
+
)
|
215 |
+
out = out + self.ip_weight * out_ip
|
216 |
+
|
217 |
+
if exists(mask):
|
218 |
+
raise NotImplementedError
|
219 |
+
out = (
|
220 |
+
out.unsqueeze(0)
|
221 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
222 |
+
.permute(0, 2, 1, 3)
|
223 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
224 |
+
)
|
225 |
+
return self.to_out(out)
|
226 |
+
|
227 |
+
|
228 |
+
class BasicTransformerBlock(nn.Module):
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
dim,
|
232 |
+
n_heads,
|
233 |
+
d_head,
|
234 |
+
dropout=0.0,
|
235 |
+
context_dim=None,
|
236 |
+
gated_ff=True,
|
237 |
+
checkpoint=True,
|
238 |
+
disable_self_attn=False,
|
239 |
+
**kwargs
|
240 |
+
):
|
241 |
+
super().__init__()
|
242 |
+
assert XFORMERS_IS_AVAILBLE, "xformers is not available"
|
243 |
+
attn_cls = MemoryEfficientCrossAttention
|
244 |
+
self.disable_self_attn = disable_self_attn
|
245 |
+
self.attn1 = attn_cls(
|
246 |
+
query_dim=dim,
|
247 |
+
heads=n_heads,
|
248 |
+
dim_head=d_head,
|
249 |
+
dropout=dropout,
|
250 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
251 |
+
) # is a self-attention if not self.disable_self_attn
|
252 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
253 |
+
self.attn2 = attn_cls(
|
254 |
+
query_dim=dim,
|
255 |
+
context_dim=context_dim,
|
256 |
+
heads=n_heads,
|
257 |
+
dim_head=d_head,
|
258 |
+
dropout=dropout,
|
259 |
+
**kwargs
|
260 |
+
) # is self-attn if context is none
|
261 |
+
self.norm1 = nn.LayerNorm(dim)
|
262 |
+
self.norm2 = nn.LayerNorm(dim)
|
263 |
+
self.norm3 = nn.LayerNorm(dim)
|
264 |
+
self.checkpoint = checkpoint
|
265 |
+
|
266 |
+
def forward(self, x, context=None):
|
267 |
+
return checkpoint(
|
268 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
269 |
+
)
|
270 |
+
|
271 |
+
def _forward(self, x, context=None):
|
272 |
+
x = (
|
273 |
+
self.attn1(
|
274 |
+
self.norm1(x), context=context if self.disable_self_attn else None
|
275 |
+
)
|
276 |
+
+ x
|
277 |
+
)
|
278 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
279 |
+
x = self.ff(self.norm3(x)) + x
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
class SpatialTransformer(nn.Module):
|
284 |
+
"""
|
285 |
+
Transformer block for image-like data.
|
286 |
+
First, project the input (aka embedding)
|
287 |
+
and reshape to b, t, d.
|
288 |
+
Then apply standard transformer action.
|
289 |
+
Finally, reshape to image
|
290 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
291 |
+
"""
|
292 |
+
|
293 |
+
def __init__(
|
294 |
+
self,
|
295 |
+
in_channels,
|
296 |
+
n_heads,
|
297 |
+
d_head,
|
298 |
+
depth=1,
|
299 |
+
dropout=0.0,
|
300 |
+
context_dim=None,
|
301 |
+
disable_self_attn=False,
|
302 |
+
use_linear=False,
|
303 |
+
use_checkpoint=True,
|
304 |
+
**kwargs
|
305 |
+
):
|
306 |
+
super().__init__()
|
307 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
308 |
+
context_dim = [context_dim]
|
309 |
+
self.in_channels = in_channels
|
310 |
+
inner_dim = n_heads * d_head
|
311 |
+
self.norm = Normalize(in_channels)
|
312 |
+
if not use_linear:
|
313 |
+
self.proj_in = nn.Conv2d(
|
314 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
315 |
+
)
|
316 |
+
else:
|
317 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
318 |
+
|
319 |
+
self.transformer_blocks = nn.ModuleList(
|
320 |
+
[
|
321 |
+
BasicTransformerBlock(
|
322 |
+
inner_dim,
|
323 |
+
n_heads,
|
324 |
+
d_head,
|
325 |
+
dropout=dropout,
|
326 |
+
context_dim=context_dim[d],
|
327 |
+
disable_self_attn=disable_self_attn,
|
328 |
+
checkpoint=use_checkpoint,
|
329 |
+
**kwargs
|
330 |
+
)
|
331 |
+
for d in range(depth)
|
332 |
+
]
|
333 |
+
)
|
334 |
+
if not use_linear:
|
335 |
+
self.proj_out = zero_module(
|
336 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
340 |
+
self.use_linear = use_linear
|
341 |
+
|
342 |
+
def forward(self, x, context=None):
|
343 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
344 |
+
if not isinstance(context, list):
|
345 |
+
context = [context]
|
346 |
+
b, c, h, w = x.shape
|
347 |
+
x_in = x
|
348 |
+
x = self.norm(x)
|
349 |
+
if not self.use_linear:
|
350 |
+
x = self.proj_in(x)
|
351 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
352 |
+
if self.use_linear:
|
353 |
+
x = self.proj_in(x)
|
354 |
+
for i, block in enumerate(self.transformer_blocks):
|
355 |
+
x = block(x, context=context[i])
|
356 |
+
if self.use_linear:
|
357 |
+
x = self.proj_out(x)
|
358 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
359 |
+
if not self.use_linear:
|
360 |
+
x = self.proj_out(x)
|
361 |
+
return x + x_in
|
362 |
+
|
363 |
+
|
364 |
+
class BasicTransformerBlock3D(BasicTransformerBlock):
|
365 |
+
def forward(self, x, context=None, num_frames=1):
|
366 |
+
return checkpoint(
|
367 |
+
self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
|
368 |
+
)
|
369 |
+
|
370 |
+
def _forward(self, x, context=None, num_frames=1):
|
371 |
+
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
|
372 |
+
x = (
|
373 |
+
self.attn1(
|
374 |
+
self.norm1(x),
|
375 |
+
context=context if self.disable_self_attn else None
|
376 |
+
)
|
377 |
+
+ x
|
378 |
+
)
|
379 |
+
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
|
380 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
381 |
+
x = self.ff(self.norm3(x)) + x
|
382 |
+
return x
|
383 |
+
|
384 |
+
|
385 |
+
class SpatialTransformer3D(nn.Module):
|
386 |
+
"""3D self-attention"""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
in_channels,
|
391 |
+
n_heads,
|
392 |
+
d_head,
|
393 |
+
depth=1,
|
394 |
+
dropout=0.0,
|
395 |
+
context_dim=None,
|
396 |
+
disable_self_attn=False,
|
397 |
+
use_linear=False,
|
398 |
+
use_checkpoint=True,
|
399 |
+
**kwargs
|
400 |
+
):
|
401 |
+
super().__init__()
|
402 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
403 |
+
context_dim = [context_dim]
|
404 |
+
self.in_channels = in_channels
|
405 |
+
inner_dim = n_heads * d_head
|
406 |
+
self.norm = Normalize(in_channels)
|
407 |
+
if not use_linear:
|
408 |
+
self.proj_in = nn.Conv2d(
|
409 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
410 |
+
)
|
411 |
+
else:
|
412 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
413 |
+
|
414 |
+
self.transformer_blocks = nn.ModuleList(
|
415 |
+
[
|
416 |
+
BasicTransformerBlock3D(
|
417 |
+
inner_dim,
|
418 |
+
n_heads,
|
419 |
+
d_head,
|
420 |
+
dropout=dropout,
|
421 |
+
context_dim=context_dim[d],
|
422 |
+
disable_self_attn=disable_self_attn,
|
423 |
+
checkpoint=use_checkpoint,
|
424 |
+
**kwargs
|
425 |
+
)
|
426 |
+
for d in range(depth)
|
427 |
+
]
|
428 |
+
)
|
429 |
+
if not use_linear:
|
430 |
+
self.proj_out = zero_module(
|
431 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
435 |
+
self.use_linear = use_linear
|
436 |
+
|
437 |
+
def forward(self, x, context=None, num_frames=1):
|
438 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
439 |
+
if not isinstance(context, list):
|
440 |
+
context = [context]
|
441 |
+
b, c, h, w = x.shape
|
442 |
+
x_in = x
|
443 |
+
x = self.norm(x)
|
444 |
+
if not self.use_linear:
|
445 |
+
x = self.proj_in(x)
|
446 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
447 |
+
if self.use_linear:
|
448 |
+
x = self.proj_in(x)
|
449 |
+
for i, block in enumerate(self.transformer_blocks):
|
450 |
+
x = block(x, context=context[i], num_frames=num_frames)
|
451 |
+
if self.use_linear:
|
452 |
+
x = self.proj_out(x)
|
453 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
454 |
+
if not self.use_linear:
|
455 |
+
x = self.proj_out(x)
|
456 |
+
return x + x_in
|