import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense import streamlit as st # Function to generate synthetic data def generate_data(dataset_type, noise, n_samples=500): np.random.seed(0) if dataset_type == 'moons': from sklearn.datasets import make_moons X, y = make_moons(n_samples=n_samples, noise=noise) elif dataset_type == 'circles': from sklearn.datasets import make_circles X, y = make_circles(n_samples=n_samples, noise=noise, factor=0.5) elif dataset_type == 'linear': X = np.random.randn(n_samples, 2) y = (X[:, 0] > X[:, 1]).astype(int) else: X = np.random.randn(n_samples, 2) y = np.random.randint(0, 2, n_samples) return X, y # Function to create model def create_model(input_shape, hidden_layers, activation, learning_rate, regularization_rate): model = Sequential() model.add(Dense(hidden_layers[0], input_shape=input_shape, activation=activation, kernel_regularizer=tf.keras.regularizers.l2(regularization_rate))) for units in hidden_layers[1:]: model.add(Dense(units, activation=activation, kernel_regularizer=tf.keras.regularizers.l2(regularization_rate))) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate), loss='binary_crossentropy', metrics=['accuracy']) return model # Streamlit UI st.title('Interactive Neural Network Visualization') st.sidebar.header('Model Parameters') # Dataset selection dataset_type = st.sidebar.selectbox('Select dataset', ['moons', 'circles', 'linear']) noise = st.sidebar.slider('Noise level', 0.0, 1.0, 0.2) X, y = generate_data(dataset_type, noise) split = st.sidebar.slider('Train/Test split ratio', 0.1, 0.9, 0.5) split_idx = int(split * len(X)) X_train, X_test = X[:split_idx], X[split_idx:] y_train, y_test = y[:split_idx], y[split_idx:] # Model parameters learning_rate = st.sidebar.slider('Learning rate', 0.001, 0.1, 0.01) activation = st.sidebar.selectbox('Activation function', ['relu', 'tanh', 'sigmoid']) regularization_rate = st.sidebar.slider('Regularization rate', 0.0, 0.1, 0.01) hidden_layers = [st.sidebar.slider('Layer 1 units', 1, 10, 4), st.sidebar.slider('Layer 2 units', 1, 10, 2)] # Create and train model model = create_model((2,), hidden_layers, activation, learning_rate, regularization_rate) history = model.fit(X_train, y_train, epochs=100, verbose=0, validation_split=0.1) # Evaluation train_loss, train_acc = model.evaluate(X_train, y_train, verbose=0) test_loss, test_acc = model.evaluate(X_test, y_test, verbose=0) st.write(f'Training loss: {train_loss:.4f}, Training accuracy: {train_acc:.4f}') st.write(f'Test loss: {test_loss:.4f}, Test accuracy: {test_acc:.4f}') # Plot data and decision boundary fig, ax = plt.subplots() ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='o', edgecolor='k', s=50) xx, yy = np.meshgrid(np.linspace(X_test[:, 0].min(), X_test[:, 0].max(), 100), np.linspace(X_test[:, 1].min(), X_test[:, 1].max(), 100)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, alpha=0.5, cmap='viridis') ax.set_title('Data and Model Decision Boundary') st.pyplot(fig)