Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import Sequential
|
5 |
+
from tensorflow.keras.layers import Dense
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
# Function to generate synthetic data
|
9 |
+
def generate_data(dataset_type, noise, n_samples=500):
|
10 |
+
np.random.seed(0)
|
11 |
+
if dataset_type == 'moons':
|
12 |
+
from sklearn.datasets import make_moons
|
13 |
+
X, y = make_moons(n_samples=n_samples, noise=noise)
|
14 |
+
elif dataset_type == 'circles':
|
15 |
+
from sklearn.datasets import make_circles
|
16 |
+
X, y = make_circles(n_samples=n_samples, noise=noise, factor=0.5)
|
17 |
+
elif dataset_type == 'linear':
|
18 |
+
X = np.random.randn(n_samples, 2)
|
19 |
+
y = (X[:, 0] > X[:, 1]).astype(int)
|
20 |
+
else:
|
21 |
+
X = np.random.randn(n_samples, 2)
|
22 |
+
y = np.random.randint(0, 2, n_samples)
|
23 |
+
return X, y
|
24 |
+
|
25 |
+
# Function to create model
|
26 |
+
def create_model(input_shape, hidden_layers, activation, learning_rate, regularization_rate):
|
27 |
+
model = Sequential()
|
28 |
+
model.add(Dense(hidden_layers[0], input_shape=input_shape, activation=activation,
|
29 |
+
kernel_regularizer=tf.keras.regularizers.l2(regularization_rate)))
|
30 |
+
for units in hidden_layers[1:]:
|
31 |
+
model.add(Dense(units, activation=activation,
|
32 |
+
kernel_regularizer=tf.keras.regularizers.l2(regularization_rate)))
|
33 |
+
model.add(Dense(1, activation='sigmoid'))
|
34 |
+
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate),
|
35 |
+
loss='binary_crossentropy',
|
36 |
+
metrics=['accuracy'])
|
37 |
+
return model
|
38 |
+
|
39 |
+
# Streamlit UI
|
40 |
+
st.title('Interactive Neural Network Visualization')
|
41 |
+
st.sidebar.header('Model Parameters')
|
42 |
+
|
43 |
+
# Dataset selection
|
44 |
+
dataset_type = st.sidebar.selectbox('Select dataset', ['moons', 'circles', 'linear'])
|
45 |
+
noise = st.sidebar.slider('Noise level', 0.0, 1.0, 0.2)
|
46 |
+
X, y = generate_data(dataset_type, noise)
|
47 |
+
split = st.sidebar.slider('Train/Test split ratio', 0.1, 0.9, 0.5)
|
48 |
+
split_idx = int(split * len(X))
|
49 |
+
X_train, X_test = X[:split_idx], X[split_idx:]
|
50 |
+
y_train, y_test = y[:split_idx], y[split_idx:]
|
51 |
+
|
52 |
+
# Model parameters
|
53 |
+
learning_rate = st.sidebar.slider('Learning rate', 0.001, 0.1, 0.01)
|
54 |
+
activation = st.sidebar.selectbox('Activation function', ['relu', 'tanh', 'sigmoid'])
|
55 |
+
regularization_rate = st.sidebar.slider('Regularization rate', 0.0, 0.1, 0.01)
|
56 |
+
hidden_layers = [st.sidebar.slider('Layer 1 units', 1, 10, 4),
|
57 |
+
st.sidebar.slider('Layer 2 units', 1, 10, 2)]
|
58 |
+
|
59 |
+
# Create and train model
|
60 |
+
model = create_model((2,), hidden_layers, activation, learning_rate, regularization_rate)
|
61 |
+
history = model.fit(X_train, y_train, epochs=100, verbose=0, validation_split=0.1)
|
62 |
+
|
63 |
+
# Evaluation
|
64 |
+
train_loss, train_acc = model.evaluate(X_train, y_train, verbose=0)
|
65 |
+
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=0)
|
66 |
+
st.write(f'Training loss: {train_loss:.4f}, Training accuracy: {train_acc:.4f}')
|
67 |
+
st.write(f'Test loss: {test_loss:.4f}, Test accuracy: {test_acc:.4f}')
|
68 |
+
|
69 |
+
# Plot data and decision boundary
|
70 |
+
fig, ax = plt.subplots()
|
71 |
+
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', marker='o', edgecolor='k', s=50)
|
72 |
+
xx, yy = np.meshgrid(np.linspace(X_test[:, 0].min(), X_test[:, 0].max(), 100),
|
73 |
+
np.linspace(X_test[:, 1].min(), X_test[:, 1].max(), 100))
|
74 |
+
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
|
75 |
+
Z = Z.reshape(xx.shape)
|
76 |
+
ax.contourf(xx, yy, Z, alpha=0.5, cmap='viridis')
|
77 |
+
ax.set_title('Data and Model Decision Boundary')
|
78 |
+
st.pyplot(fig)
|