Commit
·
8ae67aa
1
Parent(s):
16006b9
modified
Browse files- .gitignore +1 -0
- app.py +1441 -254
- content/computer_vision.json +36 -0
- content/data_analytics.json +36 -0
- content/machine_learning.json +42 -0
- content/profile.json +47 -0
- content/sections.json +25 -0
- data/My_photo.jpeg +0 -0
- data/admission_predictor_model.pkl +0 -0
- data/knowledge_base.json +0 -295
- data/resume.pdf +3 -0
- utils.py +149 -0
.gitignore
CHANGED
@@ -40,3 +40,4 @@ Thumbs.db
|
|
40 |
# Logs and temporary files
|
41 |
*.log
|
42 |
*.tmp
|
|
|
|
40 |
# Logs and temporary files
|
41 |
*.log
|
42 |
*.tmp
|
43 |
+
|
app.py
CHANGED
@@ -1,319 +1,1506 @@
|
|
1 |
import gradio as gr
|
2 |
import base64
|
|
|
|
|
3 |
|
4 |
# --- Helper Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def file_to_data_uri(filepath, mime_type="application/pdf"):
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def toggle_resume(is_visible):
|
|
|
12 |
new_state = not is_visible
|
13 |
new_label = "Hide Resume" if new_state else "View Resume"
|
14 |
return new_state, gr.update(visible=new_state), gr.update(value=new_label)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# --- CSS ---
|
17 |
portfolio_css = """
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
body {
|
22 |
font-family: 'Poppins', sans-serif;
|
23 |
-
background:
|
|
|
|
|
|
|
|
|
24 |
margin: 0;
|
25 |
padding: 0;
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
-
.gr-container {
|
28 |
-
max-width: 1200px;
|
29 |
-
margin: 0 auto;
|
30 |
-
padding: 20px;
|
31 |
}
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
.landing-section h1, .landing-section h2 {
|
39 |
-
color:
|
40 |
margin-top: 0;
|
41 |
}
|
42 |
-
.landing-section h1 {
|
43 |
-
font-
|
44 |
-
font-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
}
|
47 |
-
.landing-section h2 {
|
48 |
-
font-size: 2rem;
|
49 |
-
font-weight: 600;
|
50 |
-
margin-bottom:
|
51 |
}
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
font-weight: 700;
|
61 |
-
|
62 |
-
|
63 |
}
|
64 |
-
@keyframes
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
p, li, span {
|
69 |
-
color: #e8e8e8;
|
70 |
-
font-size: 1.2rem;
|
71 |
}
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
}
|
79 |
-
|
80 |
/* Card styling */
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
.card-container {
|
|
|
82 |
margin-bottom: 20px;
|
83 |
-
|
84 |
-
|
85 |
}
|
86 |
-
.card-container:
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
}
|
90 |
-
.clickable-card { cursor: pointer; }
|
91 |
.card-content {
|
92 |
-
border-radius: 15px;
|
93 |
padding: 30px;
|
94 |
-
height:
|
95 |
display: flex;
|
|
|
96 |
align-items: center;
|
97 |
justify-content: center;
|
98 |
-
font-size:
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
margin-bottom: 10px;
|
|
|
|
|
|
|
|
|
|
|
102 |
font-weight: 600;
|
|
|
|
|
103 |
}
|
104 |
-
/* Card gradients */
|
105 |
-
.card-da { background: linear-gradient(135deg, #6a11cb, #2575fc); }
|
106 |
-
.card-ml { background: linear-gradient(135deg, #00c6ff, #0072ff); }
|
107 |
-
.card-cv { background: linear-gradient(135deg, #f857a6, #ff5858); }
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
/* Back buttons */
|
115 |
.back-button {
|
116 |
border: none;
|
117 |
-
border-radius:
|
118 |
-
padding:
|
119 |
-
font-size: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
font-weight: 600;
|
121 |
cursor: pointer;
|
122 |
-
transition:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
margin-bottom: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
}
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
}
|
129 |
-
.back-button-da { background-color: #2575fc; color: #fff; }
|
130 |
-
.back-button-ml { background-color: #0072ff; color: #fff; }
|
131 |
-
.back-button-cv { background-color: #ff5858; color: #fff; }
|
132 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
# --- Portfolio Layout ---
|
135 |
-
with gr.Blocks(title="
|
136 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
with gr.Row(visible=True, elem_classes="landing-section") as landing_section:
|
138 |
with gr.Column():
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
with gr.Column():
|
151 |
-
|
152 |
-
<div class="card-container
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
</div>
|
156 |
-
|
157 |
-
|
158 |
with gr.Column():
|
159 |
-
|
160 |
-
<div class="card-container
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
</div>
|
164 |
-
|
165 |
-
|
166 |
with gr.Column():
|
167 |
-
|
168 |
-
<div class="card-container
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
</div>
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
-
|
198 |
-
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
gr.Markdown("""
|
265 |
-
**Professional Summary**
|
266 |
-
Innovative Computer Vision Engineer dedicated to crafting real-time, scalable vision solutions. I focus on building systems that improve accessibility and automate complex visual tasks.
|
267 |
-
""")
|
268 |
-
gr.Markdown("### Intro Video")
|
269 |
-
gr.Markdown("_Intro video is coming soon._")
|
270 |
-
gr.Markdown("### Resume Document Preview")
|
271 |
-
cv_resume_state = gr.State(value=False)
|
272 |
-
with gr.Group(visible=False) as cv_resume_container:
|
273 |
-
cv_pdf = file_to_data_uri("data/ML_CV_Resume.pdf")
|
274 |
-
gr.HTML(f"""<iframe src="{cv_pdf}" width="100%" height="600px" style="border:none;"></iframe>""")
|
275 |
-
cv_toggle_btn = gr.Button("View Resume")
|
276 |
-
cv_toggle_btn.click(fn=toggle_resume, inputs=[cv_resume_state], outputs=[cv_resume_state, cv_resume_container, cv_toggle_btn])
|
277 |
-
with gr.TabItem("Skills"):
|
278 |
-
gr.Markdown("### Core Skills")
|
279 |
-
gr.Markdown("""
|
280 |
-
- **Vision Algorithms:** Proficient in CNNs, YOLO, and segmentation for robust object detection.
|
281 |
-
- **Technical Tools:** Expert in OpenCV, PyTorch, and TensorFlow for advanced image processing.
|
282 |
-
- **Image Analysis:** Skilled in image enhancement, filtering, and OCR integration.
|
283 |
-
- **Deep Learning:** Experienced with transfer learning and model fine-tuning for custom vision tasks.
|
284 |
-
""")
|
285 |
-
with gr.TabItem("Projects"):
|
286 |
-
gr.Markdown("### Selected Projects")
|
287 |
-
gr.Markdown("""
|
288 |
-
**Smart Shopping Assistant**
|
289 |
-
An accessibility tool combining real-time object detection and OCR to guide visually impaired users in retail settings.
|
290 |
-
|
291 |
-
**Traffic Flow Counter (Upcoming)**
|
292 |
-
An edge solution using Raspberry Pi to monitor and count vehicles at intersections.
|
293 |
-
|
294 |
-
**Experimental Object Datasets**
|
295 |
-
Initiatives focused on training custom YOLO models to improve detection in complex environments.
|
296 |
-
""")
|
297 |
-
back_cv = gr.Button("← Home", elem_classes=["back-button", "back-button-cv"])
|
298 |
-
|
299 |
-
# ----- Navigation Callbacks -----
|
300 |
-
def switch_to_da():
|
301 |
-
return (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False))
|
302 |
-
def switch_to_ml():
|
303 |
-
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=(True)), gr.update(visible=(False)))
|
304 |
-
def switch_to_cv():
|
305 |
-
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=(False)), gr.update(visible=(True)))
|
306 |
-
def back_to_main():
|
307 |
-
return (gr.update(visible=True), gr.update(visible=(False)), gr.update(visible=(False)), gr.update(visible=(False)))
|
308 |
-
|
309 |
-
# Hidden card triggers for section switching
|
310 |
-
da_hidden.click(fn=switch_to_da, outputs=[landing_section, da_section, ml_section, cv_section])
|
311 |
-
ml_hidden.click(fn=switch_to_ml, outputs=[landing_section, da_section, ml_section, cv_section])
|
312 |
-
cv_hidden.click(fn=switch_to_cv, outputs=[landing_section, da_section, ml_section, cv_section])
|
313 |
|
314 |
-
#
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
|
|
|
|
318 |
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import base64
|
3 |
+
import os
|
4 |
+
import json
|
5 |
|
6 |
# --- Helper Functions ---
|
7 |
+
def load_json(filename):
|
8 |
+
"""Load JSON data from content folder"""
|
9 |
+
try:
|
10 |
+
with open(f"content/{filename}.json", "r", encoding="utf-8") as f:
|
11 |
+
return json.load(f)
|
12 |
+
except Exception as e:
|
13 |
+
print(f"Error loading {filename}.json: {e}")
|
14 |
+
return {}
|
15 |
+
|
16 |
def file_to_data_uri(filepath, mime_type="application/pdf"):
|
17 |
+
"""Convert file to data URI"""
|
18 |
+
try:
|
19 |
+
with open(filepath, "rb") as f:
|
20 |
+
data = f.read()
|
21 |
+
b64 = base64.b64encode(data).decode("utf-8")
|
22 |
+
return f"data:{mime_type};base64,{b64}"
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error converting file to data URI: {e}")
|
25 |
+
return None
|
26 |
+
|
27 |
+
def image_to_data_uri(filepath, mime_type="image/jpeg"):
|
28 |
+
"""Convert image to data URI"""
|
29 |
+
try:
|
30 |
+
with open(filepath, "rb") as f:
|
31 |
+
data = f.read()
|
32 |
+
b64 = base64.b64encode(data).decode("utf-8")
|
33 |
+
return f"data:{mime_type};base64,{b64}"
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error converting image to data URI: {e}")
|
36 |
+
return None
|
37 |
+
|
38 |
+
# --- Navigation Functions ---
|
39 |
+
def show_data_analytics():
|
40 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
41 |
+
|
42 |
+
def show_machine_learning():
|
43 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
44 |
+
|
45 |
+
def show_computer_vision():
|
46 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
47 |
+
|
48 |
+
def go_home():
|
49 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
50 |
|
51 |
def toggle_resume(is_visible):
|
52 |
+
"""Toggle the visibility of the resume section."""
|
53 |
new_state = not is_visible
|
54 |
new_label = "Hide Resume" if new_state else "View Resume"
|
55 |
return new_state, gr.update(visible=new_state), gr.update(value=new_label)
|
56 |
|
57 |
+
# --- Icons (SVG) ---
|
58 |
+
data_analytics_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path><path d="M8 10h.01"></path><path d="M12 10h.01"></path><path d="M16 10h.01"></path></svg>"""
|
59 |
+
machine_learning_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><polyline points="22 12 18 12 15 21 9 3 6 12 2 12"></polyline></svg>"""
|
60 |
+
computer_vision_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M23 19a2 2 0 0 1-2 2H3a2 2 0 0 1-2-2V8a2 2 0 0 1 2-2h4l2-3h6l2 3h4a2 2 0 0 1 2 2z"></path><circle cx="12" cy="13" r="4"></circle></svg>"""
|
61 |
+
home_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M3 9l9-7 9 7v11a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2z"></path><polyline points="9 22 9 12 15 12 15 22"></polyline></svg>"""
|
62 |
+
linkedin_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M16 8a6 6 0 0 1 6 6v7h-4v-7a2 2 0 0 0-2-2 2 2 0 0 0-2 2v7h-4v-7a6 6 0 0 1 6-6z"></path><rect x="2" y="9" width="4" height="12"></rect><circle cx="4" cy="4" r="2"></circle></svg>"""
|
63 |
+
github_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M9 19c-5 1.5-5-2.5-7-3m14 6v-3.87a3.37 3.37 0 0 0-.94-2.61c3.14-.35 6.44-1.54 6.44-7A5.44 5.44 0 0 0 20 4.77 5.07 5.07 0 0 0 19.91 1S18.73.65 16 2.48a13.38 13.38 0 0 0-7 0C6.27.65 5.09 1 5.09 1A5.07 5.07 0 0 0 5 4.77a5.44 5.44 0 0 0-1.5 3.78c0 5.42 3.3 6.61 6.44 7A3.37 3.37 0 0 0 9 18.13V22"></path></svg>"""
|
64 |
+
mail_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M4 4h16c1.1 0 2 .9 2 2v12c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V6c0-1.1.9-2 2-2z"></path><polyline points="22,6 12,13 2,6"></polyline></svg>"""
|
65 |
+
link_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg>"""
|
66 |
+
document_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M14 2H6a2 2 0 0 0-2 2v16a2 2 0 0 0 2 2h12a2 2 0 0 0 2-2V8z"></path><polyline points="14 2 14 8 20 8"></polyline><line x1="16" y1="13" x2="8" y2="13"></line><line x1="16" y1="17" x2="8" y2="17"></line><line x1="10" y1="9" x2="8" y2="9"></line></svg>"""
|
67 |
+
|
68 |
+
# Dictionary for icon access
|
69 |
+
icons = {
|
70 |
+
"data_analytics_icon": data_analytics_icon,
|
71 |
+
"machine_learning_icon": machine_learning_icon,
|
72 |
+
"computer_vision_icon": computer_vision_icon,
|
73 |
+
"home_icon": home_icon,
|
74 |
+
"linkedin_icon": linkedin_icon,
|
75 |
+
"github_icon": github_icon,
|
76 |
+
"mail_icon": mail_icon,
|
77 |
+
"link_icon": link_icon,
|
78 |
+
"document_icon": document_icon
|
79 |
+
}
|
80 |
+
|
81 |
+
# --- Helper functions for generating HTML ---
|
82 |
+
def generate_profile_html():
|
83 |
+
"""Generate HTML for the profile section"""
|
84 |
+
try:
|
85 |
+
profile_img_uri = image_to_data_uri(profile_data.get("photo", "data/My_photo.jpeg"))
|
86 |
+
|
87 |
+
# Skills HTML
|
88 |
+
skills_html = ""
|
89 |
+
for skill in profile_data.get("skills", []):
|
90 |
+
skills_html += f'<div class="skill-pill">{skill}</div>\n'
|
91 |
+
|
92 |
+
# Social links HTML
|
93 |
+
social_links_html = ""
|
94 |
+
for link in profile_data.get("social_links", []):
|
95 |
+
icon = icons.get(link.get("icon", ""), "")
|
96 |
+
id_attr = f' id="{link["id"]}"' if "id" in link else ""
|
97 |
+
social_links_html += f'''
|
98 |
+
<a href="{link["url"]}" target="_blank" class="social-button social-{link["name"].lower()}" aria-label="{link.get("aria_label", link["name"])}"{ id_attr }>
|
99 |
+
{ icon }
|
100 |
+
</a>
|
101 |
+
'''
|
102 |
+
|
103 |
+
return f'''
|
104 |
+
<div class="profile-container">
|
105 |
+
<div class="profile-pic">
|
106 |
+
<img src="{profile_img_uri}" alt="{profile_data.get("name", "Profile")}" />
|
107 |
+
</div>
|
108 |
+
<div class="name-text">{profile_data.get("name", "")}</div>
|
109 |
+
</div>
|
110 |
+
<h2>{profile_data.get("title", "")}</h2>
|
111 |
+
<div class="about-text">
|
112 |
+
{profile_data.get("about", "")}
|
113 |
+
</div>
|
114 |
+
|
115 |
+
<div class="skills-container">
|
116 |
+
{skills_html}
|
117 |
+
</div>
|
118 |
+
|
119 |
+
<div class="social-links">
|
120 |
+
{social_links_html}
|
121 |
+
</div>
|
122 |
+
'''
|
123 |
+
except Exception as e:
|
124 |
+
# Fallback if error occurs
|
125 |
+
print(f"Error generating profile HTML: {e}")
|
126 |
+
return f'''
|
127 |
+
<div class="profile-container">
|
128 |
+
<div class="profile-pic">
|
129 |
+
<img src="/api/placeholder/400/400" alt="Profile" />
|
130 |
+
</div>
|
131 |
+
<div class="name-text">{profile_data.get("name", "Name")}</div>
|
132 |
+
</div>
|
133 |
+
<h2>{profile_data.get("title", "Title")}</h2>
|
134 |
+
<div class="about-text">
|
135 |
+
{profile_data.get("about", "About text")}</div>
|
136 |
+
|
137 |
+
<div class="skills-container">
|
138 |
+
{', '.join(profile_data.get("skills", ["Skills"]))}
|
139 |
+
</div>
|
140 |
+
'''
|
141 |
+
|
142 |
+
def generate_resume_html():
|
143 |
+
"""Generate HTML for the collapsible resume section"""
|
144 |
+
return '''
|
145 |
+
<div class="resume-section glass-container">
|
146 |
+
<button class="resume-toggle-button" onclick="toggleResume()">View Resume</button>
|
147 |
+
<div id="resume-content" class="resume-content" style="display: none;">
|
148 |
+
<p>Download my resume or view it below:</p>
|
149 |
+
<a id="resume-download-link" class="resume-download-button" target="_blank">Download Resume</a>
|
150 |
+
<div class="resume-preview">
|
151 |
+
<iframe id="resume-iframe" frameborder="0" class="resume-iframe"></iframe>
|
152 |
+
</div>
|
153 |
+
</div>
|
154 |
+
</div>
|
155 |
+
<script>
|
156 |
+
function toggleResume() {
|
157 |
+
const resumeContent = document.getElementById('resume-content');
|
158 |
+
const isHidden = resumeContent.style.display === 'none';
|
159 |
+
resumeContent.style.display = isHidden ? 'block' : 'none';
|
160 |
+
|
161 |
+
if (isHidden) {
|
162 |
+
const resumeIframe = document.getElementById('resume-iframe');
|
163 |
+
const resumeDownloadLink = document.getElementById('resume-download-link');
|
164 |
+
fetch('/file/data/resume.pdf')
|
165 |
+
.then(response => response.blob())
|
166 |
+
.then(blob => {
|
167 |
+
const url = URL.createObjectURL(blob);
|
168 |
+
resumeIframe.src = url;
|
169 |
+
resumeDownloadLink.href = url;
|
170 |
+
})
|
171 |
+
.catch(err => console.error('Error loading resume:', err));
|
172 |
+
}
|
173 |
+
}
|
174 |
+
</script>
|
175 |
+
'''
|
176 |
+
|
177 |
+
def generate_cards_html():
|
178 |
+
"""Generate HTML for the specialization cards"""
|
179 |
+
cards_html = ""
|
180 |
+
for card in sections_data.get("cards", []):
|
181 |
+
icon = icons.get(card.get("icon", ""), "")
|
182 |
+
cards_html += f'''
|
183 |
+
<div class="card-container {card.get("class", "")}">
|
184 |
+
<div class="card-inner">
|
185 |
+
<div class="card-content">
|
186 |
+
{icon}
|
187 |
+
<span>{card.get("title", "")}</span>
|
188 |
+
</div>
|
189 |
+
<div class="card-description">
|
190 |
+
{card.get("description", "")}
|
191 |
+
</div>
|
192 |
+
</div>
|
193 |
+
</div>
|
194 |
+
'''
|
195 |
+
return cards_html
|
196 |
+
|
197 |
+
def generate_contact_html():
|
198 |
+
"""Generate HTML for the contact section"""
|
199 |
+
contact = profile_data.get("contact", {})
|
200 |
+
footer = profile_data.get("footer", {})
|
201 |
+
|
202 |
+
return f'''
|
203 |
+
<!-- Contact section -->
|
204 |
+
<div id="contact_section">
|
205 |
+
<h2>{contact.get("heading", "Contact Me")}</h2>
|
206 |
+
<div class="contact-container">
|
207 |
+
<p>{contact.get("text", "")}</p>
|
208 |
+
<a href="mailto:{contact.get("email", "")}" class="hire-me-button">{contact.get("button_text", "Contact")}</a>
|
209 |
+
</div>
|
210 |
+
</div>
|
211 |
+
|
212 |
+
<!-- Footer -->
|
213 |
+
<div class="footer">
|
214 |
+
<p>{footer.get("copyright", "")}</p>
|
215 |
+
<p>{footer.get("credits", "")}</p>
|
216 |
+
</div>
|
217 |
+
'''
|
218 |
+
|
219 |
+
def generate_skills_html(skills_data, section_class):
|
220 |
+
"""Generate HTML for skills in a section"""
|
221 |
+
skills_html = ""
|
222 |
+
for skill_category in skills_data:
|
223 |
+
items_html = ""
|
224 |
+
for item in skill_category.get("items", []):
|
225 |
+
items_html += f"<li>{item}</li>\n"
|
226 |
+
|
227 |
+
skills_html += f'''
|
228 |
+
<div class="skill-category">
|
229 |
+
<h4>{skill_category.get("category", "")}</h4>
|
230 |
+
<ul>
|
231 |
+
{items_html}
|
232 |
+
</ul>
|
233 |
+
</div>
|
234 |
+
'''
|
235 |
+
return skills_html
|
236 |
+
|
237 |
+
def generate_projects_html(projects_data, section_class):
|
238 |
+
"""Generate HTML for projects in a section"""
|
239 |
+
projects_html = ""
|
240 |
+
for project in projects_data:
|
241 |
+
projects_html += f'''
|
242 |
+
<div class="project-card">
|
243 |
+
<div class="project-title">
|
244 |
+
<span class="project-title-text">{project.get("title", "")}</span>
|
245 |
+
<a href="{project.get("url", "#")}" target="_blank" class="project-link">
|
246 |
+
{icons.get("link_icon", "")}
|
247 |
+
<span>View Project</span>
|
248 |
+
</a>
|
249 |
+
</div>
|
250 |
+
<div class="project-description">
|
251 |
+
{project.get("description", "")}
|
252 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> {project.get("tech_stack", "")}</span>
|
253 |
+
</div>
|
254 |
+
</div>
|
255 |
+
'''
|
256 |
+
return projects_html
|
257 |
+
|
258 |
+
def generate_section_html(section_data, section_class):
|
259 |
+
"""Generate HTML for a complete section"""
|
260 |
+
skills_html = generate_skills_html(section_data.get("skills", []), section_class)
|
261 |
+
projects_html = generate_projects_html(section_data.get("projects", []), section_class)
|
262 |
+
|
263 |
+
return f'''
|
264 |
+
<h1 class="section-heading">{section_data.get("heading", "")}</h1>
|
265 |
+
<div class="section-intro">
|
266 |
+
{section_data.get("intro", "")}
|
267 |
+
</div>
|
268 |
+
|
269 |
+
<h3 class="section-subheading {section_class}">Skills</h3>
|
270 |
+
|
271 |
+
<div class="skills-list">
|
272 |
+
{skills_html}
|
273 |
+
</div>
|
274 |
+
|
275 |
+
<h3 class="section-subheading {section_class}">Projects</h3>
|
276 |
+
|
277 |
+
{projects_html}
|
278 |
+
'''
|
279 |
+
|
280 |
# --- CSS ---
|
281 |
portfolio_css = """
|
282 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700&family=Montserrat:wght@700;800&display=swap');
|
283 |
+
:root {
|
284 |
+
--primary-da: #8a2be2;
|
285 |
+
--secondary-da: #2575fc;
|
286 |
+
--primary-ml: #00b4db;
|
287 |
+
--secondary-ml: #0083b0;
|
288 |
+
--primary-cv: #ff4d7e;
|
289 |
+
--secondary-cv: #fd3e58;
|
290 |
+
--dark-bg: #0f1118;
|
291 |
+
--card-bg: #1a1d29;
|
292 |
+
--text-primary: #ffffff;
|
293 |
+
--text-secondary: #e0e0e0;
|
294 |
+
--text-muted: #a0a0a0;
|
295 |
+
--shadow-sm: 0 4px 6px rgba(0, 0, 0, 0.1);
|
296 |
+
--shadow-md: 0 8px 16px rgba(0, 0, 0, 0.2);
|
297 |
+
--shadow-lg: 0 12px 24px rgba(0, 0, 0, 0.2);
|
298 |
+
--border-radius-sm: 8px;
|
299 |
+
--border-radius-md: 12px;
|
300 |
+
--border-radius-lg: 20px;
|
301 |
+
--transition-fast: 0.2s ease;
|
302 |
+
--transition-med: 0.3s ease;
|
303 |
+
--transition-slow: 0.5s ease;
|
304 |
+
}
|
305 |
body {
|
306 |
font-family: 'Poppins', sans-serif;
|
307 |
+
background: var(--dark-bg);
|
308 |
+
background-image:
|
309 |
+
radial-gradient(circle at 25% 25%, rgba(53, 53, 113, 0.05) 0%, transparent 50%),
|
310 |
+
radial-gradient(circle at 75% 75%, rgba(113, 53, 53, 0.05) 0%, transparent 50%);
|
311 |
+
color: var(--text-primary);
|
312 |
margin: 0;
|
313 |
padding: 0;
|
314 |
+
overflow-x: hidden;
|
315 |
+
line-height: 1.6;
|
316 |
+
letter-spacing: 0.5px;
|
317 |
+
font-weight: 400;
|
318 |
}
|
319 |
+
.gr-container {
|
320 |
+
max-width: 1200px;
|
321 |
+
margin: 0 auto;
|
322 |
+
padding: 20px;
|
323 |
}
|
324 |
+
/* Scrollbar styling */
|
325 |
+
::-webkit-scrollbar {
|
326 |
+
width: 8px;
|
327 |
+
height: 8px;
|
328 |
+
}
|
329 |
+
::-webkit-scrollbar-track {
|
330 |
+
background: rgba(255, 255, 255, 0.05);
|
331 |
+
border-radius: 4px;
|
332 |
+
}
|
333 |
+
::-webkit-scrollbar-thumb {
|
334 |
+
background: rgba(255, 255, 255, 0.2);
|
335 |
+
border-radius: 4px;
|
336 |
+
}
|
337 |
+
::-webkit-scrollbar-thumb:hover {
|
338 |
+
background: rgba(255, 255, 255, 0.3);
|
339 |
+
}
|
340 |
+
/* Landing section */
|
341 |
+
.landing-section {
|
342 |
+
text-align: center;
|
343 |
+
margin-bottom: 60px;
|
344 |
+
padding: 40px 20px;
|
345 |
+
position: relative;
|
346 |
+
}
|
347 |
+
.landing-section:before {
|
348 |
+
content: '';
|
349 |
+
position: absolute;
|
350 |
+
top: 0;
|
351 |
+
left: 0;
|
352 |
+
right: 0;
|
353 |
+
height: 500px;
|
354 |
+
background: linear-gradient(180deg, rgba(0,0,0,0.7) 0%, transparent 100%);
|
355 |
+
z-index: -1;
|
356 |
}
|
357 |
.landing-section h1, .landing-section h2 {
|
358 |
+
color: var(--text-primary) !important;
|
359 |
margin-top: 0;
|
360 |
}
|
361 |
+
.landing-section h1 {
|
362 |
+
font-family: 'Montserrat', sans-serif;
|
363 |
+
font-size: 3.2rem;
|
364 |
+
font-weight: 800;
|
365 |
+
margin-bottom: 0.5rem;
|
366 |
+
background: linear-gradient(90deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
|
367 |
+
-webkit-background-clip: text;
|
368 |
+
background-clip: text;
|
369 |
+
color: transparent !important;
|
370 |
+
letter-spacing: -0.5px;
|
371 |
}
|
372 |
+
.landing-section h2 {
|
373 |
+
font-size: 2rem;
|
374 |
+
font-weight: 600;
|
375 |
+
margin-bottom: 1.5rem;
|
376 |
}
|
377 |
+
.profile-container {
|
378 |
+
margin: 30px auto;
|
379 |
+
display: flex;
|
380 |
+
align-items: center;
|
381 |
+
justify-content: center;
|
382 |
+
flex-direction: column;
|
383 |
+
}
|
384 |
+
.profile-pic {
|
385 |
+
width: 180px;
|
386 |
+
height: 180px;
|
387 |
+
border-radius: 50%;
|
388 |
+
object-fit: cover;
|
389 |
+
border: 4px solid rgba(255, 255, 255, 0.2);
|
390 |
+
box-shadow: var(--shadow-md);
|
391 |
+
margin-bottom: 20px;
|
392 |
+
position: relative;
|
393 |
+
background: linear-gradient(45deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
|
394 |
+
padding: 4px;
|
395 |
+
}
|
396 |
+
.profile-pic img {
|
397 |
+
border-radius: 50%;
|
398 |
+
width: 100%;
|
399 |
+
height: 100%;
|
400 |
+
object-fit: cover;
|
401 |
+
}
|
402 |
+
.name-text {
|
403 |
+
font-size: 2.6rem;
|
404 |
font-weight: 700;
|
405 |
+
margin-top: 10px;
|
406 |
+
margin-bottom: 10px;
|
407 |
}
|
408 |
+
@keyframes float {
|
409 |
+
0% { transform: translateY(0px) }
|
410 |
+
50% { transform: translateY(-10px) }
|
411 |
+
100% { transform: translateY(0px) }
|
|
|
|
|
|
|
412 |
}
|
413 |
+
@keyframes pulse {
|
414 |
+
0% { transform: scale(1); }
|
415 |
+
50% { transform: scale(1.05); }
|
416 |
+
100% { transform: scale(1); }
|
417 |
+
}
|
418 |
+
.about-text {
|
419 |
+
max-width: 800px;
|
420 |
+
margin: 0 auto 40px;
|
421 |
+
font-size: 1.25rem;
|
422 |
+
line-height: 1.6;
|
423 |
+
color: var(--text-secondary);
|
424 |
+
}
|
425 |
+
.skills-container {
|
426 |
+
margin-top: 20px;
|
427 |
+
display: flex;
|
428 |
+
flex-wrap: wrap;
|
429 |
+
justify-content: center;
|
430 |
+
gap: 10px;
|
431 |
+
margin-bottom: 40px;
|
432 |
+
}
|
433 |
+
.skill-pill {
|
434 |
+
background: rgba(255, 255, 255, 0.1);
|
435 |
+
padding: 8px 16px;
|
436 |
+
border-radius: 30px;
|
437 |
+
font-size: 0.9rem;
|
438 |
+
font-weight: 500;
|
439 |
+
color: var(--text-secondary);
|
440 |
+
}
|
441 |
+
.social-links {
|
442 |
+
display: flex;
|
443 |
+
justify-content: center;
|
444 |
+
gap: 20px;
|
445 |
+
margin: 30px 0;
|
446 |
+
}
|
447 |
+
.social-button {
|
448 |
+
background: rgba(255, 255, 255, 0.1);
|
449 |
+
border: none;
|
450 |
+
border-radius: 50%;
|
451 |
+
width: 50px;
|
452 |
+
height: 50px;
|
453 |
+
display: flex;
|
454 |
+
align-items: center;
|
455 |
+
justify-content: center;
|
456 |
+
transition: all var(--transition-med);
|
457 |
+
color: var(--text-primary);
|
458 |
+
font-size: 1.2rem;
|
459 |
+
box-shadow: var(--shadow-sm);
|
460 |
+
}
|
461 |
+
.social-button:hover {
|
462 |
+
transform: translateY(-5px);
|
463 |
+
background: rgba(255, 255, 255, 0.2);
|
464 |
+
box-shadow: var(--shadow-md);
|
465 |
+
}
|
466 |
+
.social-linkedin:hover { background: #0077b5; }
|
467 |
+
.social-github:hover { background: #333; }
|
468 |
+
.social-email:hover { background: #ea4335; }
|
469 |
+
.social-button svg {
|
470 |
+
width: 24px;
|
471 |
+
height: 24px;
|
472 |
}
|
|
|
473 |
/* Card styling */
|
474 |
+
.cards-grid {
|
475 |
+
display: grid;
|
476 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
477 |
+
gap: 30px;
|
478 |
+
margin: 40px 0;
|
479 |
+
}
|
480 |
.card-container {
|
481 |
+
position: relative; /* Important for button positioning */
|
482 |
margin-bottom: 20px;
|
483 |
+
height: 100%;
|
484 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
485 |
}
|
486 |
+
.card-container.da:before {
|
487 |
+
content: '';
|
488 |
+
position: absolute;
|
489 |
+
top: 0;
|
490 |
+
left: 0;
|
491 |
+
right: 0;
|
492 |
+
height: 6px;
|
493 |
+
background: linear-gradient(90deg, var(--primary-da), var(--secondary-da));
|
494 |
+
z-index: 5;
|
495 |
+
border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
|
496 |
+
}
|
497 |
+
.card-container.ml:before {
|
498 |
+
content: '';
|
499 |
+
position: absolute;
|
500 |
+
top: 0;
|
501 |
+
left: 0;
|
502 |
+
right: 0;
|
503 |
+
height: 6px;
|
504 |
+
background: linear-gradient(90deg, var(--primary-ml), var(--secondary-ml));
|
505 |
+
z-index: 5;
|
506 |
+
transition: all var(--transition-med);
|
507 |
+
border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
|
508 |
+
}
|
509 |
+
.card-container.cv:before {
|
510 |
+
content: '';
|
511 |
+
position: absolute;
|
512 |
+
top: 0;
|
513 |
+
left: 0;
|
514 |
+
right: 0;
|
515 |
+
height: 6px;
|
516 |
+
background: linear-gradient(90deg, var(--primary-cv), var(--secondary-cv));
|
517 |
+
z-index: 5;
|
518 |
+
border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
|
519 |
}
|
|
|
520 |
.card-content {
|
|
|
521 |
padding: 30px;
|
522 |
+
min-height: 200px;
|
523 |
display: flex;
|
524 |
+
flex-direction: column;
|
525 |
align-items: center;
|
526 |
justify-content: center;
|
527 |
+
font-size: 26px;
|
528 |
+
font-weight: 700;
|
529 |
+
position: relative;
|
530 |
+
z-index: 2;
|
531 |
+
transition: all var(--transition-med);
|
532 |
+
}
|
533 |
+
.card-content svg {
|
534 |
+
width: 60px;
|
535 |
+
height: 60px;
|
536 |
+
margin-bottom: 20px;
|
537 |
+
opacity: 0.9;
|
538 |
+
transition: all var(--transition-med);
|
539 |
+
}
|
540 |
+
.card-inner {
|
541 |
+
transition: transform var(--transition-med), box-shadow var(--transition-med), background-color var(--transition-med);
|
542 |
+
text-align: center;
|
543 |
+
border-radius: var(--border-radius-md);
|
544 |
+
background: var(--card-bg);
|
545 |
+
overflow: hidden;
|
546 |
+
box-shadow: var(--shadow-md);
|
547 |
+
height: 100%;
|
548 |
+
cursor: pointer; /* Indicates the card is clickable */
|
549 |
+
position: relative; /* Ensure child elements are positioned relative to the card */
|
550 |
+
}
|
551 |
+
.card-inner:hover {
|
552 |
+
transform: translateY(-10px) scale(1.05); /* Adds a slight zoom effect */
|
553 |
+
box-shadow: var(--shadow-lg); /* Increases shadow for emphasis */
|
554 |
+
background: rgba(255, 255, 255, 0.1); /* Subtle background change */
|
555 |
+
border: 2px solid var(--primary-da); /* Optional: Add a border to emphasize hover */
|
556 |
+
}
|
557 |
+
.card-inner:hover .card-content svg {
|
558 |
+
transform: scale(1.1); /* Slightly enlarges the icon */
|
559 |
+
opacity: 1;
|
560 |
+
}
|
561 |
+
.card-inner:hover .card-description {
|
562 |
+
color: var(--text-primary); /* Optional: changes text color for emphasis */
|
563 |
+
}
|
564 |
+
/* Add a subtle glow effect */
|
565 |
+
.card-inner:hover:before {
|
566 |
+
content: '';
|
567 |
+
position: absolute;
|
568 |
+
top: 0;
|
569 |
+
left: 0;
|
570 |
+
right: 0;
|
571 |
+
bottom: 0;
|
572 |
+
border-radius: var(--border-radius-md);
|
573 |
+
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3);
|
574 |
+
z-index: -1;
|
575 |
+
}
|
576 |
+
.card-description {
|
577 |
+
padding: 0 20px 20px;
|
578 |
+
color: var(--text-secondary);
|
579 |
+
font-size: 1.1rem;
|
580 |
+
line-height: 1.5;
|
581 |
+
}
|
582 |
+
/* Card button styling - crucial for making cards clickable */
|
583 |
+
.card-button {
|
584 |
+
position: absolute !important;
|
585 |
+
top: 0 !important;
|
586 |
+
left: 0 !important;
|
587 |
+
width: 100% !important;
|
588 |
+
height: 100% !important;
|
589 |
+
opacity: 0 !important;
|
590 |
+
z-index: 10 !important;
|
591 |
+
cursor: pointer !important;
|
592 |
+
margin: 0 !important;
|
593 |
+
padding: 0 !important;
|
594 |
+
border: none !important;
|
595 |
+
transform: scale(1.05) !important;
|
596 |
+
transition: transform 0.2s ease !important;
|
597 |
+
background: none !important;
|
598 |
+
}
|
599 |
+
|
600 |
+
.click-to-view {
|
601 |
+
margin-top: 15px;
|
602 |
+
padding: 8px 15px;
|
603 |
+
border-radius: 20px;
|
604 |
+
display: inline-block;
|
605 |
+
font-weight: 600;
|
606 |
+
font-size: 0.9rem;
|
607 |
+
transition: all var(--transition-med);
|
608 |
+
background: rgba(255, 255, 255, 0.1);
|
609 |
+
box-shadow: var(--shadow-sm);
|
610 |
+
margin-left: auto;
|
611 |
+
margin-right: auto;
|
612 |
+
color: var(--text-primary);
|
613 |
+
text-align: center;
|
614 |
+
}
|
615 |
+
|
616 |
+
/* Add glow effect */
|
617 |
+
.click-to-view:hover {
|
618 |
+
transform: translateY(-2px);
|
619 |
+
box-shadow: 0 0 15px rgba(255, 255, 255, 0.5), var(--shadow-md);
|
620 |
+
background: rgba(255, 255, 255, 0.2);
|
621 |
+
color: var(--text-primary);
|
622 |
+
filter: brightness(1.2);
|
623 |
+
}
|
624 |
+
|
625 |
+
/* Add animation for subtle pulsing effect */
|
626 |
+
@keyframes glow-pulse {
|
627 |
+
0% {
|
628 |
+
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
|
629 |
+
}
|
630 |
+
50% {
|
631 |
+
box-shadow: 0 0 15px rgba(255, 255, 255, 0.4);
|
632 |
+
}
|
633 |
+
100% {
|
634 |
+
box-shadow: 0 0 5px rgba(255, 255, 255, 0.2);
|
635 |
+
}
|
636 |
+
}
|
637 |
+
|
638 |
+
.click-to-view {
|
639 |
+
animation: glow-pulse 3s infinite;
|
640 |
+
}
|
641 |
+
|
642 |
+
.card-description p {
|
643 |
+
margin-bottom: 15px;
|
644 |
+
margin-top: 0;
|
645 |
+
}
|
646 |
+
|
647 |
+
.card-description {
|
648 |
+
display: flex;
|
649 |
+
flex-direction: column;
|
650 |
+
align-items: center;
|
651 |
+
justify-content: space-between;
|
652 |
+
height: 100%;
|
653 |
+
padding: 0 20px 20px;
|
654 |
+
color: var(--text-secondary);
|
655 |
+
font-size: 1.1rem;
|
656 |
+
line-height: 1.5;
|
657 |
+
}
|
658 |
+
|
659 |
+
/* Different colors for each card type */
|
660 |
+
.da-click {
|
661 |
+
color: var(--primary-da);
|
662 |
+
border: 1px solid var(--primary-da);
|
663 |
+
}
|
664 |
+
|
665 |
+
.ml-click {
|
666 |
+
color: var(--primary-ml);
|
667 |
+
border: 1px solid var(--primary-ml);
|
668 |
+
}
|
669 |
+
|
670 |
+
.cv-click {
|
671 |
+
color: var(--primary-cv);
|
672 |
+
border: 1px solid var(--primary-cv);
|
673 |
+
}
|
674 |
+
|
675 |
+
/* Hover effects */
|
676 |
+
.click-to-view:hover {
|
677 |
+
transform: translateY(-2px);
|
678 |
+
box-shadow: var(--shadow-md);
|
679 |
+
background: rgba(255, 255, 255, 0.15);
|
680 |
+
}
|
681 |
+
|
682 |
+
.card-inner:hover .click-to-view {
|
683 |
+
transform: translateY(-2px);
|
684 |
+
box-shadow: var(--shadow-md);
|
685 |
+
}
|
686 |
+
|
687 |
+
.card-inner:hover .da-click {
|
688 |
+
background-color: rgba(138, 43, 226, 0.1);
|
689 |
+
}
|
690 |
+
|
691 |
+
.card-inner:hover .ml-click {
|
692 |
+
background-color: rgba(0, 180, 219, 0.1);
|
693 |
+
}
|
694 |
+
|
695 |
+
.card-inner:hover .cv-click {
|
696 |
+
background-color: rgba(255, 77, 126, 0.1);
|
697 |
+
}
|
698 |
+
|
699 |
+
.experience-timeline {
|
700 |
+
margin: 80px 0 60px;
|
701 |
+
padding: 20px;
|
702 |
+
position: relative;
|
703 |
+
}
|
704 |
+
|
705 |
+
.experience-timeline h2 {
|
706 |
+
text-align: center;
|
707 |
+
margin-bottom: 60px;
|
708 |
+
position: relative;
|
709 |
+
display: inline-block;
|
710 |
+
left: 50%;
|
711 |
+
transform: translateX(-50%);
|
712 |
+
font-family: 'Montserrat', sans-serif;
|
713 |
+
font-size: 2.5rem;
|
714 |
+
font-weight: 700;
|
715 |
+
background: linear-gradient(90deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
|
716 |
+
-webkit-background-clip: text;
|
717 |
+
background-clip: text;
|
718 |
+
color: transparent;
|
719 |
+
}
|
720 |
+
|
721 |
+
.experience-timeline h2:after {
|
722 |
+
content: '';
|
723 |
+
position: absolute;
|
724 |
+
bottom: -10px;
|
725 |
+
left: 0;
|
726 |
+
width: 100%;
|
727 |
+
height: 3px;
|
728 |
+
border-radius: 3px;
|
729 |
+
background: linear-gradient(90deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
|
730 |
+
}
|
731 |
+
|
732 |
+
/* Horizontal Timeline Styling */
|
733 |
+
.timeline-container {
|
734 |
+
display: flex;
|
735 |
+
justify-content: space-between;
|
736 |
+
align-items: flex-start;
|
737 |
+
position: relative;
|
738 |
+
margin: 40px auto;
|
739 |
+
max-width: 100%;
|
740 |
+
overflow-x: auto;
|
741 |
+
padding: 20px 0;
|
742 |
+
}
|
743 |
+
|
744 |
+
.timeline-track {
|
745 |
+
position: absolute;
|
746 |
+
top: 50%;
|
747 |
+
left: 0;
|
748 |
+
right: 0;
|
749 |
+
height: 4px;
|
750 |
+
background: linear-gradient(to right, var(--primary-da), var(--primary-ml), var(--primary-cv));
|
751 |
+
border-radius: 2px;
|
752 |
+
z-index: 1;
|
753 |
+
}
|
754 |
+
|
755 |
+
.timeline-node {
|
756 |
+
position: relative;
|
757 |
+
display: flex;
|
758 |
+
flex-direction: column;
|
759 |
+
align-items: center;
|
760 |
+
width: 150px;
|
761 |
+
margin: 0 20px;
|
762 |
+
z-index: 2;
|
763 |
+
}
|
764 |
+
|
765 |
+
.timeline-dot {
|
766 |
+
width: 20px;
|
767 |
+
height: 20px;
|
768 |
+
background: var(--primary-da);
|
769 |
+
border-radius: 50%;
|
770 |
+
box-shadow: 0 0 10px rgba(255, 255, 255, 0.5);
|
771 |
margin-bottom: 10px;
|
772 |
+
transition: transform 0.3s ease;
|
773 |
+
}
|
774 |
+
|
775 |
+
.timeline-year {
|
776 |
+
font-size: 1rem;
|
777 |
font-weight: 600;
|
778 |
+
margin-bottom: 10px;
|
779 |
+
color: var(--text-primary);
|
780 |
}
|
|
|
|
|
|
|
|
|
781 |
|
782 |
+
.timeline-content {
|
783 |
+
background: var(--card-bg);
|
784 |
+
border-radius: var(--border-radius-md);
|
785 |
+
box-shadow: var(--shadow-sm);
|
786 |
+
padding: 15px;
|
787 |
+
text-align: center;
|
788 |
+
width: 100%;
|
789 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
790 |
+
}
|
791 |
+
|
792 |
+
.timeline-node:hover .timeline-dot {
|
793 |
+
transform: scale(1.3);
|
794 |
+
}
|
795 |
|
796 |
+
.timeline-node:hover .timeline-content {
|
797 |
+
transform: translateY(-10px);
|
798 |
+
box-shadow: var(--shadow-md);
|
799 |
+
}
|
800 |
+
|
801 |
+
/* Responsive adjustments for smaller screens */
|
802 |
+
@media (max-width: 768px) {
|
803 |
+
.timeline-container {
|
804 |
+
flex-direction: column;
|
805 |
+
align-items: center;
|
806 |
+
}
|
807 |
+
|
808 |
+
.timeline-track {
|
809 |
+
display: none;
|
810 |
+
}
|
811 |
+
|
812 |
+
.timeline-node {
|
813 |
+
margin: 20px 0;
|
814 |
+
}
|
815 |
+
}
|
816 |
+
|
817 |
+
/* Section styling */
|
818 |
+
.section-container {
|
819 |
+
padding: 60px 20px;
|
820 |
+
position: relative;
|
821 |
+
}
|
822 |
+
.section-container:before {
|
823 |
+
content: '';
|
824 |
+
position: absolute;
|
825 |
+
top: 0;
|
826 |
+
left: 0;
|
827 |
+
width: 100%;
|
828 |
+
height: 300px;
|
829 |
+
background: radial-gradient(ellipse at top, rgba(255,255,255,0.05) 0%, transparent 70%);
|
830 |
+
z-index: 0;
|
831 |
+
}
|
832 |
+
.da-section h1.section-heading {
|
833 |
+
color: var(--primary-da);
|
834 |
+
position: relative;
|
835 |
+
display: inline-block;
|
836 |
+
}
|
837 |
+
.ml-section h1.section-heading {
|
838 |
+
color: var(--primary-ml);
|
839 |
+
position: relative;
|
840 |
+
display: inline-block;
|
841 |
+
}
|
842 |
+
.cv-section h1.section-heading {
|
843 |
+
color: var(--primary-cv);
|
844 |
+
position: relative;
|
845 |
+
display: inline-block;
|
846 |
+
}
|
847 |
+
.section-heading:after {
|
848 |
+
content: '';
|
849 |
+
position: absolute;
|
850 |
+
bottom: -10px;
|
851 |
+
left: 0;
|
852 |
+
width: 100%;
|
853 |
+
height: 3px;
|
854 |
+
border-radius: 3px;
|
855 |
+
}
|
856 |
+
.da-section .section-heading:after { background: var(--primary-da); }
|
857 |
+
.ml-section .section-heading:after { background: var(--primary-ml); }
|
858 |
+
.cv-section .section-heading:after { background: var(--primary-cv); }
|
859 |
+
/* Subheadings color-coded */
|
860 |
+
.section-subheading.da { color: var(--primary-da); }
|
861 |
+
.section-subheading.ml { color: var(--primary-ml); }
|
862 |
+
.section-subheading.cv { color: var(--primary-cv); }
|
863 |
/* Back buttons */
|
864 |
.back-button {
|
865 |
border: none;
|
866 |
+
border-radius: var(--border-radius-lg);
|
867 |
+
padding: 10px 20px;
|
868 |
+
font-size: 0.95rem;
|
869 |
+
font-weight: 600;
|
870 |
+
cursor: pointer;
|
871 |
+
transition: transform var(--transition-fast), box-shadow var(--transition-fast);
|
872 |
+
margin-bottom: 30px;
|
873 |
+
display: flex;
|
874 |
+
align-items: center;
|
875 |
+
gap: 8px;
|
876 |
+
}
|
877 |
+
.back-button:hover {
|
878 |
+
transform: translateY(-3px);
|
879 |
+
box-shadow: var(--shadow-md);
|
880 |
+
}
|
881 |
+
.back-button-da {
|
882 |
+
background: linear-gradient(45deg, var(--primary-da), var(--secondary-da));
|
883 |
+
color: #fff;
|
884 |
+
}
|
885 |
+
.back-button-ml {
|
886 |
+
background: linear-gradient(45deg, var(--primary-ml), var(--secondary-ml));
|
887 |
+
color: #fff;
|
888 |
+
}
|
889 |
+
.back-button-cv {
|
890 |
+
background: linear-gradient(45deg, var(--primary-cv), var(--secondary-cv));
|
891 |
+
color: #fff;
|
892 |
+
}
|
893 |
+
.back-button svg {
|
894 |
+
width: 20px;
|
895 |
+
height: 20px;
|
896 |
+
}
|
897 |
+
/* Contact form */
|
898 |
+
.contact-container {
|
899 |
+
background: var(--card-bg);
|
900 |
+
border-radius: var(--border-radius-md);
|
901 |
+
padding: 30px;
|
902 |
+
max-width: 600px;
|
903 |
+
margin: 0 auto;
|
904 |
+
box-shadow: var(--shadow-md);
|
905 |
+
}
|
906 |
+
.hire-me-button {
|
907 |
+
background: linear-gradient(45deg, var(--primary-da), var(--primary-cv));
|
908 |
+
color: white;
|
909 |
+
border: none;
|
910 |
+
border-radius: var(--border-radius-lg);
|
911 |
+
padding: 12px 25px;
|
912 |
+
font-size: 1rem;
|
913 |
font-weight: 600;
|
914 |
cursor: pointer;
|
915 |
+
transition: all var(--transition-med);
|
916 |
+
margin-top: 20px;
|
917 |
+
box-shadow: var(--shadow-sm);
|
918 |
+
display: inline-block;
|
919 |
+
text-decoration: none;
|
920 |
+
}
|
921 |
+
.hire-me-button:hover {
|
922 |
+
transform: translateY(-3px);
|
923 |
+
box-shadow: var(--shadow-md);
|
924 |
+
filter: brightness(1.1);
|
925 |
+
}
|
926 |
+
/* Project cards */
|
927 |
+
.project-card {
|
928 |
+
background: var(--card-bg);
|
929 |
+
border-radius: var(--border-radius-md);
|
930 |
+
padding: 25px;
|
931 |
margin-bottom: 20px;
|
932 |
+
box-shadow: var(--shadow-sm);
|
933 |
+
transition: all var(--transition-med);
|
934 |
+
border-left: 4px solid transparent;
|
935 |
+
}
|
936 |
+
.da-section .project-card { border-left-color: var(--primary-da); }
|
937 |
+
.ml-section .project-card { border-left-color: var(--primary-ml); }
|
938 |
+
.cv-section .project-card { border-left-color: var(--primary-cv); }
|
939 |
+
.project-card:hover {
|
940 |
+
transform: translateX(5px);
|
941 |
+
box-shadow: var(--shadow-md);
|
942 |
+
}
|
943 |
+
.project-title {
|
944 |
+
font-size: 1.3rem;
|
945 |
+
font-weight: 600;
|
946 |
+
margin-bottom: 10px;
|
947 |
+
display: flex;
|
948 |
+
align-items: center;
|
949 |
+
justify-content: space-between;
|
950 |
+
}
|
951 |
+
.project-title-text {
|
952 |
+
flex: 1;
|
953 |
+
}
|
954 |
+
.project-link {
|
955 |
+
color: var(--text-secondary);
|
956 |
+
transition: all var(--transition-med);
|
957 |
+
text-decoration: none;
|
958 |
+
display: inline-flex;
|
959 |
+
align-items: center;
|
960 |
+
margin-left: 10px;
|
961 |
+
}
|
962 |
+
.project-link svg {
|
963 |
+
width: 16px;
|
964 |
+
height: 16px;
|
965 |
+
margin-right: 5px;
|
966 |
+
}
|
967 |
+
.da-section .project-title-text { color: var(--primary-da); }
|
968 |
+
.ml-section .project-title-text { color: var(--primary-ml); }
|
969 |
+
.cv-section .project-title-text { color: var(--primary-cv); }
|
970 |
+
.da-section .project-link:hover { color: var(--primary-da); }
|
971 |
+
.ml-section .project-link:hover { color: var(--primary-ml); }
|
972 |
+
.cv-section .project-link:hover { color: var(--primary-cv); }
|
973 |
+
.project-description {
|
974 |
+
color: var(--text-secondary);
|
975 |
+
line-height: 1.5;
|
976 |
+
}
|
977 |
+
.tech-stack {
|
978 |
+
display: block;
|
979 |
+
margin-top: 10px;
|
980 |
+
font-style: italic;
|
981 |
+
color: var(--text-muted);
|
982 |
+
}
|
983 |
+
/* Skills list */
|
984 |
+
.skills-list {
|
985 |
+
display: grid;
|
986 |
+
grid-template-columns: repeat(auto-fill, minmax(220px, 1fr));
|
987 |
+
gap: 15px;
|
988 |
+
margin-top: 20px;
|
989 |
+
margin-bottom: 40px; /* Added margin to create space between skills and projects */
|
990 |
+
}
|
991 |
+
.skill-category {
|
992 |
+
background: rgba(255, 255, 255, 0.05);
|
993 |
+
border-radius: var(--border-radius-sm);
|
994 |
+
padding: 15px;
|
995 |
+
transition: all var(--transition-med);
|
996 |
+
}
|
997 |
+
.skill-category:hover {
|
998 |
+
background: rgba(255, 255, 255, 0.08);
|
999 |
+
transform: translateY(-3px);
|
1000 |
+
}
|
1001 |
+
.skill-category h4 {
|
1002 |
+
margin-top: 0;
|
1003 |
+
margin-bottom: 10px;
|
1004 |
+
font-size: 1.1rem;
|
1005 |
+
}
|
1006 |
+
.da-section .skill-category h4 { color: var(--primary-da); }
|
1007 |
+
.ml-section .skill-category h4 { color: var(--primary-ml); }
|
1008 |
+
.cv-section .skill-category h4 { color: var(--primary-cv); }
|
1009 |
+
.skill-category ul {
|
1010 |
+
margin: 0;
|
1011 |
+
padding-left: 20px;
|
1012 |
+
color: var(--text-secondary);
|
1013 |
+
}
|
1014 |
+
.skill-category li {
|
1015 |
+
margin-bottom: 5px;
|
1016 |
+
}
|
1017 |
+
/* Section intro text */
|
1018 |
+
.section-intro {
|
1019 |
+
max-width: 800px;
|
1020 |
+
margin-bottom: 30px;
|
1021 |
+
line-height: 1.6;
|
1022 |
+
color: var(--text-secondary);
|
1023 |
+
font-size: 1.1rem;
|
1024 |
+
}
|
1025 |
+
/* Footer */
|
1026 |
+
.footer {
|
1027 |
+
text-align: center;
|
1028 |
+
padding: 40px 20px;
|
1029 |
+
margin-top: 60px;
|
1030 |
+
color: var(--text-muted);
|
1031 |
+
font-size: 0.9rem;
|
1032 |
+
}
|
1033 |
+
/* Animations for scroll */
|
1034 |
+
.animate-on-scroll {
|
1035 |
+
opacity: 0;
|
1036 |
+
transform: translateY(20px);
|
1037 |
+
transition: opacity 0.6s ease, transform 0.6s ease;
|
1038 |
+
}
|
1039 |
+
|
1040 |
+
.animate-on-scroll.show {
|
1041 |
+
animation: fadeInUp 0.6s ease forwards;
|
1042 |
+
}
|
1043 |
+
|
1044 |
+
@keyframes fadeInUp {
|
1045 |
+
0% {
|
1046 |
+
opacity: 0;
|
1047 |
+
transform: translateY(20px);
|
1048 |
+
}
|
1049 |
+
100% {
|
1050 |
+
opacity: 1;
|
1051 |
+
transform: translateY(0);
|
1052 |
+
}
|
1053 |
+
}
|
1054 |
+
|
1055 |
+
/* Loading states */
|
1056 |
+
.loading-spinner {
|
1057 |
+
border: 4px solid rgba(255, 255, 255, 0.2);
|
1058 |
+
border-top: 4px solid var(--primary-da);
|
1059 |
+
border-radius: 50%;
|
1060 |
+
width: 40px;
|
1061 |
+
height: 40px;
|
1062 |
+
animation: spin 1s linear infinite;
|
1063 |
+
}
|
1064 |
+
|
1065 |
+
@keyframes spin {
|
1066 |
+
0% {
|
1067 |
+
transform: rotate(0deg);
|
1068 |
+
}
|
1069 |
+
100% {
|
1070 |
+
transform: rotate(360deg);
|
1071 |
+
}
|
1072 |
+
}
|
1073 |
+
|
1074 |
+
/* Glassmorphism effects */
|
1075 |
+
.glass-container {
|
1076 |
+
background: rgba(255, 255, 255, 0.1);
|
1077 |
+
backdrop-filter: blur(10px);
|
1078 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
1079 |
+
border-radius: var(--border-radius-md);
|
1080 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
1081 |
+
}
|
1082 |
+
|
1083 |
+
/* Subtle background patterns */
|
1084 |
+
body {
|
1085 |
+
background-image: url('https://www.transparenttextures.com/patterns/noise.png');
|
1086 |
+
}
|
1087 |
+
|
1088 |
+
/* Gradient refinements */
|
1089 |
+
button {
|
1090 |
+
background: linear-gradient(45deg, var(--primary-da), var(--primary-ml));
|
1091 |
+
}
|
1092 |
+
|
1093 |
+
/* Shadow depth variations */
|
1094 |
+
.card-container:hover {
|
1095 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
1096 |
+
}
|
1097 |
+
|
1098 |
+
/* ARIA attributes */
|
1099 |
+
button {
|
1100 |
+
aria-label: "Interactive button";
|
1101 |
+
}
|
1102 |
+
|
1103 |
+
/* Keyboard navigation */
|
1104 |
+
button:focus {
|
1105 |
+
outline: 2px solid var(--primary-da);
|
1106 |
+
outline-offset: 2px;
|
1107 |
+
}
|
1108 |
+
|
1109 |
+
/* Mobile-first refinements */
|
1110 |
+
@media (max-width: 768px) {
|
1111 |
+
.cards-grid {
|
1112 |
+
grid-template-columns: 1fr;
|
1113 |
+
}
|
1114 |
+
}
|
1115 |
+
|
1116 |
+
/* Touch-friendly targets */
|
1117 |
+
button {
|
1118 |
+
padding: 12px 20px;
|
1119 |
+
}
|
1120 |
+
|
1121 |
+
/* Responsive typography */
|
1122 |
+
h1 {
|
1123 |
+
font-size: calc(2rem + 1vw);
|
1124 |
+
}
|
1125 |
+
|
1126 |
+
/* Parallax scrolling effects */
|
1127 |
+
.section-container:before {
|
1128 |
+
content: '';
|
1129 |
+
position: absolute;
|
1130 |
+
top: 0;
|
1131 |
+
left: 0;
|
1132 |
+
width: 100%;
|
1133 |
+
height: 300px;
|
1134 |
+
background: linear-gradient(180deg, rgba(0, 0, 0, 0.5), transparent);
|
1135 |
+
transform: translateY(-50%);
|
1136 |
+
will-change: transform;
|
1137 |
+
transition: transform 0.3s ease;
|
1138 |
+
}
|
1139 |
+
|
1140 |
+
body.onscroll .section-container:before {
|
1141 |
+
transform: translateY(0);
|
1142 |
+
}
|
1143 |
+
|
1144 |
+
/* Mouse-follow glow effect */
|
1145 |
+
.interactive:hover {
|
1146 |
+
box-shadow: 0 0 15px rgba(255, 255, 255, 0.5);
|
1147 |
+
}
|
1148 |
+
|
1149 |
+
/* Staggered animation sequences */
|
1150 |
+
@keyframes staggeredFadeIn {
|
1151 |
+
0% {
|
1152 |
+
opacity: 0;
|
1153 |
+
transform: translateY(20px);
|
1154 |
+
}
|
1155 |
+
100% {
|
1156 |
+
opacity: 1;
|
1157 |
+
transform: translateY(0);
|
1158 |
+
}
|
1159 |
+
}
|
1160 |
+
|
1161 |
+
.list-item {
|
1162 |
+
opacity: 0;
|
1163 |
+
animation: staggeredFadeIn 0.6s ease forwards;
|
1164 |
+
}
|
1165 |
+
|
1166 |
+
.list-item:nth-child(1) {
|
1167 |
+
animation-delay: 0.2s;
|
1168 |
+
}
|
1169 |
+
|
1170 |
+
.list-item:nth-child(2) {
|
1171 |
+
animation-delay: 0.4s;
|
1172 |
+
}
|
1173 |
+
|
1174 |
+
.list-item:nth-child(3) {
|
1175 |
+
animation-delay: 0.6s;
|
1176 |
+
}
|
1177 |
+
|
1178 |
+
/* Interactive particles background */
|
1179 |
+
.particles-bg {
|
1180 |
+
position: absolute;
|
1181 |
+
top: 0;
|
1182 |
+
left: 0;
|
1183 |
+
width: 100%;
|
1184 |
+
height: 100%;
|
1185 |
+
background: url('https://www.transparenttextures.com/patterns/cubes.png');
|
1186 |
+
opacity: 0.1;
|
1187 |
+
}
|
1188 |
+
|
1189 |
+
/* Smooth page section transitions */
|
1190 |
+
html {
|
1191 |
+
scroll-behavior: smooth;
|
1192 |
+
}
|
1193 |
+
|
1194 |
+
/* Custom cursor styles */
|
1195 |
+
body {
|
1196 |
+
cursor: url('https://example.com/custom-cursor.png'), auto;
|
1197 |
+
}
|
1198 |
+
|
1199 |
+
button:hover {
|
1200 |
+
cursor: pointer;
|
1201 |
+
}
|
1202 |
+
|
1203 |
+
/* Resume Section */
|
1204 |
+
.resume-section {
|
1205 |
+
margin: 40px auto;
|
1206 |
+
padding: 20px;
|
1207 |
+
text-align: center;
|
1208 |
+
max-width: 800px;
|
1209 |
+
box-shadow: var(--shadow-md);
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
.resume-toggle-button {
|
1213 |
+
background: linear-gradient(45deg, var(--primary-da), var(--primary-cv));
|
1214 |
+
color: white;
|
1215 |
+
border: none;
|
1216 |
+
border-radius: var(--border-radius-lg);
|
1217 |
+
padding: 10px 20px;
|
1218 |
+
font-size: 1rem;
|
1219 |
+
font-weight: 600;
|
1220 |
+
cursor: pointer;
|
1221 |
+
transition: all var(--transition-med);
|
1222 |
+
box-shadow: var(--shadow-sm);
|
1223 |
+
width: auto; /* Adjust width to fit the text */
|
1224 |
+
min-width: 150px; /* Optional: Set a minimum width for consistency */
|
1225 |
+
}
|
1226 |
+
|
1227 |
+
.resume-toggle-button:hover {
|
1228 |
+
transform: translateY(-3px);
|
1229 |
+
box-shadow: var(--shadow-md);
|
1230 |
+
filter: brightness(1.1);
|
1231 |
}
|
1232 |
+
|
1233 |
+
.resume-content {
|
1234 |
+
margin-top: 20px;
|
1235 |
+
text-align: center;
|
1236 |
+
}
|
1237 |
+
|
1238 |
+
.resume-download-button {
|
1239 |
+
display: inline-block;
|
1240 |
+
margin: 20px 0;
|
1241 |
+
padding: 10px 20px;
|
1242 |
+
font-size: 1rem;
|
1243 |
+
font-weight: 600;
|
1244 |
+
color: white;
|
1245 |
+
background: linear-gradient(45deg, var(--primary-da), var(--primary-cv));
|
1246 |
+
border: none;
|
1247 |
+
border-radius: var(--border-radius-lg);
|
1248 |
+
text-decoration: none;
|
1249 |
+
transition: all var(--transition-med);
|
1250 |
+
box-shadow: var(--shadow-sm);
|
1251 |
+
}
|
1252 |
+
|
1253 |
+
.resume-download-button:hover {
|
1254 |
+
transform: translateY(-3px);
|
1255 |
+
box-shadow: var(--shadow-md);
|
1256 |
+
filter: brightness(1.1);
|
1257 |
+
}
|
1258 |
+
|
1259 |
+
.resume-preview {
|
1260 |
+
margin-top: 20px;
|
1261 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
1262 |
+
border-radius: var(--border-radius-md);
|
1263 |
+
overflow: hidden;
|
1264 |
+
box-shadow: var(--shadow-sm);
|
1265 |
+
}
|
1266 |
+
|
1267 |
+
.resume-iframe {
|
1268 |
+
width: 100%;
|
1269 |
+
height: 500px;
|
1270 |
+
border: none;
|
1271 |
+
}
|
1272 |
+
|
1273 |
+
/* Performance optimizations */
|
1274 |
+
img {
|
1275 |
+
loading: lazy;
|
1276 |
+
}
|
1277 |
+
|
1278 |
+
/* Micro-interactions */
|
1279 |
+
button:hover {
|
1280 |
+
transform: translateY(-3px);
|
1281 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
|
1282 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
1283 |
+
}
|
1284 |
+
|
1285 |
+
button:active {
|
1286 |
+
transform: scale(0.95);
|
1287 |
+
transition: transform 0.1s ease;
|
1288 |
}
|
|
|
|
|
|
|
1289 |
"""
|
1290 |
+
# Load all content from JSON files
|
1291 |
+
try:
|
1292 |
+
profile_data = load_json("profile")
|
1293 |
+
sections_data = load_json("sections")
|
1294 |
+
data_analytics_data = load_json("data_analytics")
|
1295 |
+
machine_learning_data = load_json("machine_learning")
|
1296 |
+
computer_vision_data = load_json("computer_vision")
|
1297 |
+
except Exception as e:
|
1298 |
+
print(f"Error loading content: {e}")
|
1299 |
+
# Default values in case of error
|
1300 |
+
profile_data = {}
|
1301 |
+
sections_data = {"cards": []}
|
1302 |
+
data_analytics_data = {}
|
1303 |
+
machine_learning_data = {}
|
1304 |
+
computer_vision_data = {}
|
1305 |
|
1306 |
# --- Portfolio Layout ---
|
1307 |
+
with gr.Blocks(title=f"{profile_data.get('name', 'Portfolio')}", css=portfolio_css) as demo:
|
1308 |
+
# Create sections
|
1309 |
+
# Data Analytics Section (initially hidden)
|
1310 |
+
with gr.Row(visible=False, elem_classes="section-container da-section") as da_section:
|
1311 |
+
with gr.Column():
|
1312 |
+
# Back button
|
1313 |
+
back_from_da = gr.Button("← Back to Home", elem_classes="back-button back-button-da")
|
1314 |
+
gr.HTML(generate_section_html(data_analytics_data, "da"))
|
1315 |
+
|
1316 |
+
# Machine Learning Section (initially hidden)
|
1317 |
+
with gr.Row(visible=False, elem_classes="section-container ml-section") as ml_section:
|
1318 |
+
with gr.Column():
|
1319 |
+
# Back button
|
1320 |
+
back_from_ml = gr.Button("← Back to Home", elem_classes="back-button back-button-ml")
|
1321 |
+
gr.HTML(generate_section_html(machine_learning_data, "ml"))
|
1322 |
+
|
1323 |
+
# Computer Vision Section (initially hidden)
|
1324 |
+
with gr.Row(visible=False, elem_classes="section-container cv-section") as cv_section:
|
1325 |
+
with gr.Column():
|
1326 |
+
# Back button
|
1327 |
+
back_from_cv = gr.Button("← Back to Home", elem_classes="back-button back-button-cv")
|
1328 |
+
gr.HTML(generate_section_html(computer_vision_data, "cv"))
|
1329 |
+
|
1330 |
with gr.Row(visible=True, elem_classes="landing-section") as landing_section:
|
1331 |
with gr.Column():
|
1332 |
+
# Profile section with picture
|
1333 |
+
gr.HTML(generate_profile_html())
|
1334 |
+
|
1335 |
+
# Resume Section (moved above "My Specializations")
|
1336 |
+
resume_state = gr.State(value=False)
|
1337 |
+
with gr.Group(visible=False) as resume_container:
|
1338 |
+
resume_pdf = file_to_data_uri("data/resume.pdf")
|
1339 |
+
gr.HTML(f"""<iframe src="{resume_pdf}" width="100%" height="600px" style="border:none;"></iframe>""")
|
1340 |
+
resume_toggle_btn = gr.Button("View Resume")
|
1341 |
+
resume_toggle_btn.click(fn=toggle_resume, inputs=[resume_state], outputs=[resume_state, resume_container, resume_toggle_btn])
|
1342 |
+
|
1343 |
+
# Specializations heading
|
1344 |
+
gr.HTML("<h2>My Specializations</h2>")
|
1345 |
+
|
1346 |
+
# Cards Grid with proper structure
|
1347 |
+
with gr.Row(elem_classes="cards-grid"):
|
1348 |
with gr.Column():
|
1349 |
+
# Data Analytics Card
|
1350 |
+
gr.HTML('<div class="card-container da">')
|
1351 |
+
da_button = gr.Button("Data Analytics", elem_classes="card-button")
|
1352 |
+
gr.HTML(f'''
|
1353 |
+
<div class="card-inner">
|
1354 |
+
<div class="card-content">
|
1355 |
+
{icons.get(sections_data.get("cards", [])[0].get("icon", ""), "")}
|
1356 |
+
<span>{sections_data.get("cards", [])[0].get("title", "Data Analytics")}</span>
|
1357 |
+
</div>
|
1358 |
+
<div class="card-description">
|
1359 |
+
{sections_data.get("cards", [])[0].get("description", "")}
|
1360 |
+
<div class="click-to-view da-click">Click to view</div>
|
1361 |
+
</div>
|
1362 |
+
</div>
|
1363 |
</div>
|
1364 |
+
''')
|
1365 |
+
|
1366 |
with gr.Column():
|
1367 |
+
# Machine Learning Card
|
1368 |
+
gr.HTML('<div class="card-container ml">')
|
1369 |
+
ml_button = gr.Button("Machine Learning", elem_classes="card-button")
|
1370 |
+
gr.HTML(f'''
|
1371 |
+
<div class="card-inner">
|
1372 |
+
<div class="card-content">
|
1373 |
+
{icons.get(sections_data.get("cards", [])[1].get("icon", ""), "")}
|
1374 |
+
<span>{sections_data.get("cards", [])[1].get("title", "Machine Learning")}</span>
|
1375 |
+
</div>
|
1376 |
+
<div class="card-description">
|
1377 |
+
{sections_data.get("cards", [])[1].get("description", "")}
|
1378 |
+
<div class="click-to-view ml-click">Click to view</div>
|
1379 |
+
</div>
|
1380 |
+
</div>
|
1381 |
</div>
|
1382 |
+
''')
|
1383 |
+
|
1384 |
with gr.Column():
|
1385 |
+
# Computer Vision Card
|
1386 |
+
gr.HTML('<div class="card-container cv">')
|
1387 |
+
cv_button = gr.Button("Computer Vision", elem_classes="card-button")
|
1388 |
+
gr.HTML(f'''
|
1389 |
+
<div class="card-inner">
|
1390 |
+
<div class="card-content">
|
1391 |
+
{icons.get(sections_data.get("cards", [])[2].get("icon", ""), "")}
|
1392 |
+
<span>{sections_data.get("cards", [])[2].get("title", "Computer Vision")}</span>
|
1393 |
+
</div>
|
1394 |
+
<div class="card-description">
|
1395 |
+
{sections_data.get("cards", [])[2].get("description", "")}
|
1396 |
+
<div class="click-to-view cv-click">Click to view</div>
|
1397 |
+
</div>
|
1398 |
</div>
|
1399 |
+
</div>
|
1400 |
+
''')
|
1401 |
+
|
1402 |
+
gr.HTML(f'''
|
1403 |
+
<div class="experience-timeline">
|
1404 |
+
<h2>My Journey</h2>
|
1405 |
+
|
1406 |
+
<div class="timeline-container">
|
1407 |
+
<div class="timeline-track"></div>
|
1408 |
+
|
1409 |
+
<div class="timeline-node">
|
1410 |
+
<div class="timeline-dot"></div>
|
1411 |
+
<div class="timeline-year">2018-2021</div>
|
1412 |
+
<div class="timeline-content">
|
1413 |
+
<div class="timeline-title">Bachelor's in Commerce (89%)</div>
|
1414 |
+
<div class="timeline-details">
|
1415 |
+
<p class="timeline-location">University Name</p>
|
1416 |
+
<p>Graduated with honors focusing on business analytics.</p>
|
1417 |
+
</div>
|
1418 |
+
</div>
|
1419 |
+
</div>
|
1420 |
+
|
1421 |
+
<div class="timeline-node">
|
1422 |
+
<div class="timeline-dot"></div>
|
1423 |
+
<div class="timeline-year">2021-2023</div>
|
1424 |
+
<div class="timeline-content">
|
1425 |
+
<div class="timeline-title">Junior Software Engineer at Cognizant</div>
|
1426 |
+
<div class="timeline-details">
|
1427 |
+
<p class="timeline-location">Cognizant</p>
|
1428 |
+
<p>Developed web applications and data visualization systems.</p>
|
1429 |
+
</div>
|
1430 |
+
</div>
|
1431 |
+
</div>
|
1432 |
+
|
1433 |
+
<div class="timeline-node">
|
1434 |
+
<div class="timeline-dot"></div>
|
1435 |
+
<div class="timeline-year">2023-2024</div>
|
1436 |
+
<div class="timeline-content">
|
1437 |
+
<div class="timeline-title">Post-Graduation in AI/ML (97%)</div>
|
1438 |
+
<div class="timeline-details">
|
1439 |
+
<p class="timeline-location">University Name, Canada</p>
|
1440 |
+
<p>Advanced studies in machine learning and data science.</p>
|
1441 |
+
</div>
|
1442 |
+
</div>
|
1443 |
+
</div>
|
1444 |
+
|
1445 |
+
<div class="timeline-node">
|
1446 |
+
<div class="timeline-dot"></div>
|
1447 |
+
<div class="timeline-year">2025</div>
|
1448 |
+
<div class="timeline-content">
|
1449 |
+
<div class="timeline-title">Seeking ML Engineer/Data Scientist Role</div>
|
1450 |
+
<div class="timeline-details">
|
1451 |
+
<p>Ready for opportunities in ML and Data Science in Canada.</p>
|
1452 |
+
</div>
|
1453 |
+
</div>
|
1454 |
+
</div>
|
1455 |
+
</div>
|
1456 |
+
</div>
|
1457 |
+
''')
|
1458 |
+
|
1459 |
+
gr.HTML("""
|
1460 |
+
<script>
|
1461 |
+
document.addEventListener('DOMContentLoaded', function() {
|
1462 |
+
// Get all timeline nodes
|
1463 |
+
const timelineNodes = document.querySelectorAll('.timeline-node');
|
1464 |
+
|
1465 |
+
// Add click event listener to each node
|
1466 |
+
timelineNodes.forEach(node => {
|
1467 |
+
node.addEventListener('click', function() {
|
1468 |
+
// Check if this node is already active
|
1469 |
+
const isActive = this.classList.contains('active');
|
1470 |
+
|
1471 |
+
// Remove active class from all nodes
|
1472 |
+
timelineNodes.forEach(n => n.classList.remove('active'));
|
1473 |
+
|
1474 |
+
// If node wasn't active before, make it active
|
1475 |
+
if (!isActive) {
|
1476 |
+
this.classList.add('active');
|
1477 |
+
}
|
1478 |
+
});
|
1479 |
+
});
|
1480 |
+
|
1481 |
+
// Make the first node active by default
|
1482 |
+
if (timelineNodes.length > 0) {
|
1483 |
+
timelineNodes[0].classList.add('active');
|
1484 |
+
}
|
1485 |
+
});
|
1486 |
+
</script>
|
1487 |
+
""")
|
1488 |
+
|
1489 |
+
# Contact section
|
1490 |
+
gr.HTML(generate_contact_html())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1491 |
|
1492 |
+
# Add a Gradio File component to serve the resume file
|
1493 |
+
gr.File(value="data/resume.pdf", label="Resume", interactive=False, visible=False)
|
1494 |
+
|
1495 |
+
# Set up click events for navigation
|
1496 |
+
da_button.click(show_data_analytics, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1497 |
+
ml_button.click(show_machine_learning, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1498 |
+
cv_button.click(show_computer_vision, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1499 |
|
1500 |
+
back_from_da.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1501 |
+
back_from_ml.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1502 |
+
back_from_cv.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1503 |
+
|
1504 |
+
# Launch the app
|
1505 |
+
if __name__ == "__main__":
|
1506 |
+
demo.launch()
|
content/computer_vision.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"heading": "Computer Vision",
|
3 |
+
"intro": "I'm passionate about developing computer vision systems that can perceive and understand visual information in ways that benefit humans. My experience spans from implementing state-of-the-art algorithms to deploying them in real-world scenarios. I've worked on projects that enable machines to \"see\" and interpret their environment through image processing, object detection, and image classification. I focus particularly on applications that improve accessibility and solve tangible problems, creating CV solutions that operate efficiently even with hardware constraints.",
|
4 |
+
"skills": [
|
5 |
+
{
|
6 |
+
"category": "CV Techniques",
|
7 |
+
"items": ["Object Detection", "Image Segmentation", "Feature Extraction", "Image Classification"]
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"category": "CV Libraries",
|
11 |
+
"items": ["OpenCV", "PIL/Pillow", "TorchVision", "TF Computer Vision"]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"category": "Deep Learning for CV",
|
15 |
+
"items": ["CNNs", "YOLO frameworks", "Transfer Learning", "Object Recognition"]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"category": "Applications",
|
19 |
+
"items": ["Accessibility Solutions", "OCR/Document Analysis", "Motion Tracking", "Edge Deployment"]
|
20 |
+
}
|
21 |
+
],
|
22 |
+
"projects": [
|
23 |
+
{
|
24 |
+
"title": "Smart Shopping Assistant for the Blind",
|
25 |
+
"url": "https://github.com/Manyue-datascientist/smart_glove_project",
|
26 |
+
"description": "Designed a system using object detection and OCR to help visually impaired individuals find products and navigate shopping aisles. Developed with real-time feedback on Raspberry Pi and OAK-D camera, this project demonstrates my commitment to creating technology that solves real accessibility challenges.",
|
27 |
+
"tech_stack": "YOLOv8, OpenCV, Raspberry Pi"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"title": "Traffic Flow Counter (Upcoming)",
|
31 |
+
"url": "#",
|
32 |
+
"description": "An edge solution using Raspberry Pi to monitor and count vehicles at intersections, providing real-time traffic flow analytics. This project demonstrates efficient deployment of CV models on resource-constrained devices.",
|
33 |
+
"tech_stack": "YOLOv5, Raspberry Pi, OpenCV"
|
34 |
+
}
|
35 |
+
]
|
36 |
+
}
|
content/data_analytics.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"heading": "Data Analytics",
|
3 |
+
"intro": "I specialize in transforming raw data into actionable business insights that drive strategic decision-making. With a strong background in both data analytics and commerce, I bridge the gap between business needs and technical solutions. My approach combines statistical analysis with compelling data visualization to tell stories that solve real-world problems. I've developed expertise in designing dashboards that make complex data accessible and creating end-to-end analysis workflows that uncover hidden patterns and trends.",
|
4 |
+
"skills": [
|
5 |
+
{
|
6 |
+
"category": "Data Visualization",
|
7 |
+
"items": ["Power BI", "Tableau", "Matplotlib/Seaborn", "Plotly/Dash"]
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"category": "Data Manipulation",
|
11 |
+
"items": ["SQL", "Pandas", "NumPy", "ETL Pipelines"]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"category": "Analysis Techniques",
|
15 |
+
"items": ["Statistical Analysis", "A/B Testing", "Time Series Analysis", "Customer Segmentation"]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"category": "Business Intelligence",
|
19 |
+
"items": ["KPI Development", "Executive Reporting", "Data Storytelling", "Process Optimization"]
|
20 |
+
}
|
21 |
+
],
|
22 |
+
"projects": [
|
23 |
+
{
|
24 |
+
"title": "Northwind Sales Insight Dashboard",
|
25 |
+
"url": "https://github.com/Manyue-datascientist/northwind-retail-analysis",
|
26 |
+
"description": "A business-driven case study where I performed in-depth EDA on the classic Northwind dataset. I uncovered key trends in sales, customer behavior, and product performance, and built a professional dashboard for storytelling using Power BI and SQL.",
|
27 |
+
"tech_stack": "SQL, Power BI, Pandas"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"title": "Loan Default Risk Analysis",
|
31 |
+
"url": "#",
|
32 |
+
"description": "A feature-driven analytics project where I identified critical drivers of loan defaults. I applied statistical analysis and visual storytelling to assist in better loan disbursement strategies.",
|
33 |
+
"tech_stack": "Python, Matplotlib, Pandas"
|
34 |
+
}
|
35 |
+
]
|
36 |
+
}
|
content/machine_learning.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"heading": "Machine Learning",
|
3 |
+
"intro": "My machine learning expertise spans from traditional algorithms to deep learning systems that solve real business challenges. I've built end-to-end ML pipelines that deliver measurable impact, combining the right models with appropriate feature engineering techniques. I focus on creating solutions that are not only technically sound but also deployable, maintainable, and integrated with business workflows. With a solid foundation in Python-based ML frameworks and cloud deployment platforms, I develop models that generate actionable predictions and insights.",
|
4 |
+
"skills": [
|
5 |
+
{
|
6 |
+
"category": "Frameworks & Libraries",
|
7 |
+
"items": ["TensorFlow/Keras", "PyTorch", "Scikit-Learn", "XGBoost/LightGBM"]
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"category": "ML Techniques",
|
11 |
+
"items": ["Supervised Learning", "Unsupervised Learning", "Deep Learning", "Natural Language Processing"]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"category": "MLOps",
|
15 |
+
"items": ["ML Pipelines", "Model Monitoring", "Deployment Strategies", "Version Control (DVC)"]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"category": "Cloud ML Services",
|
19 |
+
"items": ["AWS SageMaker", "Google AI Platform", "Azure ML", "MLflow"]
|
20 |
+
}
|
21 |
+
],
|
22 |
+
"projects": [
|
23 |
+
{
|
24 |
+
"title": "University Admission Predictor",
|
25 |
+
"url": "#",
|
26 |
+
"description": "Built a regression model to predict the chances of a student getting admitted to top universities based on academic profiles. The project includes feature importance analysis, model tuning, and a live demo deployed with Streamlit.",
|
27 |
+
"tech_stack": "Scikit-learn, Streamlit, NumPy"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"title": "AI Chat Assistant for Recruiters",
|
31 |
+
"url": "https://huggingface.co/spaces/Manyue-DataScientist/AI-Assistant",
|
32 |
+
"description": "A custom-trained assistant that answers queries about my resume and portfolio using NLP and retrieval techniques. Built to simulate real-time interactions with hiring teams, this project showcases my ability to work with large language models and create practical AI applications.",
|
33 |
+
"tech_stack": "LangChain, OpenAI, Gradio"
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"title": "Speaker Diarization Application",
|
37 |
+
"url": "https://huggingface.co/spaces/Manyue-DataScientist/speaker-diarization-app-v2",
|
38 |
+
"description": "Developed an advanced multi-speaker audio processing system that performs speaker diarization, transcription, and summarization to extract meaningful insights from multi-speaker conversations.",
|
39 |
+
"tech_stack": "PyTorch, Hugging Face Transformers, Gradio"
|
40 |
+
}
|
41 |
+
]
|
42 |
+
}
|
content/profile.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Manyue Javvadi",
|
3 |
+
"title": "AI/ML Engineer & Data Scientist",
|
4 |
+
"about": "I'm a software engineer turned AI/ML practitioner with a strong foundation in Commerce and experience in ML, computer vision, and data analytics. I blend business understanding with data-driven thinking to create real-world solutions. Currently open to roles in Data Science, Machine Learning Engineering, and Computer Vision.",
|
5 |
+
"photo": "data/My_photo.jpeg",
|
6 |
+
"skills": [
|
7 |
+
"Python",
|
8 |
+
"Machine Learning",
|
9 |
+
"TensorFlow",
|
10 |
+
"PyTorch",
|
11 |
+
"Computer Vision",
|
12 |
+
"Data Analytics",
|
13 |
+
"SQL",
|
14 |
+
"Power BI"
|
15 |
+
],
|
16 |
+
"social_links": [
|
17 |
+
{
|
18 |
+
"name": "LinkedIn",
|
19 |
+
"url": "https://www.linkedin.com/in/manyue-javvadi-datascientist/",
|
20 |
+
"icon": "linkedin_icon",
|
21 |
+
"aria_label": "LinkedIn"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"name": "GitHub",
|
25 |
+
"url": "https://github.com/Manyue-datascientist",
|
26 |
+
"icon": "github_icon",
|
27 |
+
"aria_label": "GitHub"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "Email",
|
31 |
+
"url": "mailto:[email protected]",
|
32 |
+
"icon": "mail_icon",
|
33 |
+
"aria_label": "Contact Me",
|
34 |
+
"id": "contact_btn"
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"contact": {
|
38 |
+
"heading": "Contact Me",
|
39 |
+
"text": "Looking for a data scientist or ML engineer for your team?",
|
40 |
+
"button_text": "Hire Me",
|
41 |
+
"email": "[email protected]"
|
42 |
+
},
|
43 |
+
"footer": {
|
44 |
+
"copyright": "© 2025 Manyue Javvadi. All rights reserved.",
|
45 |
+
"credits": "Made with Gradio"
|
46 |
+
}
|
47 |
+
}
|
content/sections.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cards": [
|
3 |
+
{
|
4 |
+
"id": "data_analytics",
|
5 |
+
"title": "Data Analytics",
|
6 |
+
"icon": "data_analytics_icon",
|
7 |
+
"description": "Data storytelling, insights extraction, interactive dashboards & business problem-solving",
|
8 |
+
"class": "da"
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"id": "machine_learning",
|
12 |
+
"title": "Machine Learning",
|
13 |
+
"icon": "machine_learning_icon",
|
14 |
+
"description": "Feature engineering, model training, deployment & automation pipelines",
|
15 |
+
"class": "ml"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"id": "computer_vision",
|
19 |
+
"title": "Computer Vision",
|
20 |
+
"icon": "computer_vision_icon",
|
21 |
+
"description": "Object detection, image recognition, edge AI & accessibility applications",
|
22 |
+
"class": "cv"
|
23 |
+
}
|
24 |
+
]
|
25 |
+
}
|
data/My_photo.jpeg
ADDED
![]() |
data/admission_predictor_model.pkl
DELETED
Binary file (1.72 kB)
|
|
data/knowledge_base.json
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"personal_details": {
|
3 |
-
"full_name": "Manyue Javvadi",
|
4 |
-
"current_location": "Canada",
|
5 |
-
"nationality": "Indian",
|
6 |
-
"professional_summary": "I'm Manyue Javvadi, a Machine Learning enthusiast passionate about creating projects that push the limits of innovation. Guided by the belief that 'Imagination is more powerful than knowledge,' as Albert Einstein once said, I strive to develop solutions that enhance human potential, not replace it. Explore the ideas and creations that aren't just part of the present—they're shaping a future where technology and humanity thrive together.",
|
7 |
-
"online_presence": {
|
8 |
-
"personal_website": "https://manyuejavvadi.netlify.app/",
|
9 |
-
"linkedin": "https://www.linkedin.com/in/manyue-javvadi-datascientist/",
|
10 |
-
"portfolio": "https://manyue-datascientist-portfolio.streamlit.app/",
|
11 |
-
"blog_posts": [
|
12 |
-
{
|
13 |
-
"title": "The Questions That Kept Me Up All Night: My Sleepless Struggle to Understand NLP",
|
14 |
-
"focus": "Deep dive into Natural Language Processing challenges and insights"
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"title": "Are We Headed Toward the Next Threat, Bigger Than a Nuclear Bomb?",
|
18 |
-
"focus": "Analysis of AI safety and ethical considerations"
|
19 |
-
},
|
20 |
-
{
|
21 |
-
"title": "How KNN Works: A Simple Explanation of Nearest Neighbors",
|
22 |
-
"link":"https://knn-algorithm-explained-by-manyue-javvadi.hashnode.dev/how-knn-works-a-simple-explanation-of-nearest-neighbors",
|
23 |
-
"focus": "Educational content breaking down ML algorithms"
|
24 |
-
}
|
25 |
-
]
|
26 |
-
},
|
27 |
-
"career_transition": {
|
28 |
-
"key_decision": "Transitioned from Java development at Cognizant to pursue ML/AI dream in Canada",
|
29 |
-
"motivation": "Combining technical expertise with innovation and commerce skills in ML/AI field",
|
30 |
-
"current_focus": "Building practical ML solutions while advancing education in Canada"
|
31 |
-
}
|
32 |
-
},
|
33 |
-
"education": {
|
34 |
-
"postgraduate": [
|
35 |
-
{
|
36 |
-
"course_name": "Big Data Analytics",
|
37 |
-
"institution": "Georgian College",
|
38 |
-
"graduation_year": "2024",
|
39 |
-
"gpa": "8.3/10",
|
40 |
-
"achievements": ["Dean's List Honoree"],
|
41 |
-
"key_courses": [
|
42 |
-
"Advanced Machine Learning",
|
43 |
-
"Big Data Processing",
|
44 |
-
"Statistical Analysis",
|
45 |
-
"Data Visualization"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"course_name": "Applied AI Solutions Development Program",
|
50 |
-
"institution": "George Brown College",
|
51 |
-
"graduation_year": "2025",
|
52 |
-
"gpa": "3.8/4.0",
|
53 |
-
"key_courses": [
|
54 |
-
"Deep Learning Applications",
|
55 |
-
"Natural Language Processing",
|
56 |
-
"Computer Vision",
|
57 |
-
"MLOps and Deployment"
|
58 |
-
]
|
59 |
-
}
|
60 |
-
],
|
61 |
-
"undergraduate": {
|
62 |
-
"course_name": "Bachelor of Commerce",
|
63 |
-
"institution": "SRM University Chennai",
|
64 |
-
"graduation_year": "2021",
|
65 |
-
"grade": "89%",
|
66 |
-
"relevance": "Strong foundation in business analytics and decision-making"
|
67 |
-
},
|
68 |
-
"ongoing_learning": {
|
69 |
-
"certifications_in_progress": ["MLOps Specialization"],
|
70 |
-
"areas_of_focus": [
|
71 |
-
"Model Deployment",
|
72 |
-
"CI/CD for ML",
|
73 |
-
"ML System Design"
|
74 |
-
]
|
75 |
-
}
|
76 |
-
},
|
77 |
-
"skills": {
|
78 |
-
"technical_skills": {
|
79 |
-
"machine_learning": {
|
80 |
-
"core": ["Supervised Learning", "Unsupervised Learning", "Neural Networks"],
|
81 |
-
"frameworks": ["scikit-learn", "TensorFlow", "PyTorch"],
|
82 |
-
"focus_areas": ["NLP", "Computer Vision", "Recommendation Systems"]
|
83 |
-
},
|
84 |
-
"programming": {
|
85 |
-
"primary": ["Python", "Java"],
|
86 |
-
"libraries": ["NumPy", "Pandas", "Matplotlib", "Seaborn"],
|
87 |
-
"tools": ["Git", "Docker"]
|
88 |
-
},
|
89 |
-
"data": {
|
90 |
-
"databases": ["SQL", "MongoDB"],
|
91 |
-
"visualization": ["Tableau", "PowerBI"],
|
92 |
-
"processing": ["PySpark", "Hadoop"]
|
93 |
-
},
|
94 |
-
"deployment": {
|
95 |
-
"web": ["Streamlit", "Flask"],
|
96 |
-
"mlops": ["MLflow", "DVC"],
|
97 |
-
"version_control": ["Git", "GitHub"]
|
98 |
-
}
|
99 |
-
},
|
100 |
-
"soft_skills": [
|
101 |
-
{
|
102 |
-
"skill": "Problem-solving",
|
103 |
-
"context": "Developed innovative solutions in ML projects"
|
104 |
-
},
|
105 |
-
{
|
106 |
-
"skill": "Communication",
|
107 |
-
"context": "Technical blog writing and project documentation"
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"skill": "Adaptability",
|
111 |
-
"context": "Successfully transitioned from commerce to tech"
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"skill": "Leadership",
|
115 |
-
"context": "Led project teams and initiatives"
|
116 |
-
}
|
117 |
-
]
|
118 |
-
},
|
119 |
-
"professional_experience": {
|
120 |
-
"work_experience": [
|
121 |
-
{
|
122 |
-
"position": "Junior Software Engineer",
|
123 |
-
"company": "Cognizant",
|
124 |
-
"duration": "June 2021 – September 2023",
|
125 |
-
"location": "Chennai, India",
|
126 |
-
"achievements": [
|
127 |
-
"Developed and maintained Java applications in insurance domain",
|
128 |
-
"Led migration from SVN to GitHub for improved development workflow",
|
129 |
-
"Collaborated with cross-functional teams for requirement analysis",
|
130 |
-
"Resolved version conflicts during application upgrades"
|
131 |
-
],
|
132 |
-
"technologies_used": [
|
133 |
-
"Java",
|
134 |
-
"Spring Framework",
|
135 |
-
"SQL",
|
136 |
-
"Git"
|
137 |
-
],
|
138 |
-
"impact": "Improved documentation process and streamlined backend storage"
|
139 |
-
}
|
140 |
-
]
|
141 |
-
},
|
142 |
-
"projects": {
|
143 |
-
|
144 |
-
"major_projects": [
|
145 |
-
{
|
146 |
-
"name": "AI-Powered POS System",
|
147 |
-
"description": "An innovative Point-of-Sale system that integrates cutting-edge AI technologies to revolutionize restaurant operations. The project involves proprietary algorithms and novel approaches that are currently under IP discussion with my institution.",
|
148 |
-
"impact": "Aims to transform how restaurants handle operations, inventory, and customer service using AI",
|
149 |
-
"skills_used": ["Python", "MLOps", "Deep Learning", "Computer Vision"],
|
150 |
-
"status": "Under active development - MVP phase",
|
151 |
-
"confidentiality_note": "Full details under IP review"
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"name": "Innovative E-commerce Enhancement",
|
155 |
-
"description": "Developing a transformative feature for Shopify stores that leverages advanced NLP and ML techniques to significantly improve customer engagement and conversion rates.",
|
156 |
-
"impact": "Early testing shows promising results in customer interaction metrics",
|
157 |
-
"skills_used": ["Python", "Neural Networks", "NLP", "Deep Learning"],
|
158 |
-
"status": "In development - proprietary solution",
|
159 |
-
"confidentiality_note": "Details limited due to potential commercial application"
|
160 |
-
},
|
161 |
-
{
|
162 |
-
"name": "Smart Nutrition Recommendation System",
|
163 |
-
"description": "An innovative system that scans product barcodes and analyzes nutrition labels to provide personalized healthy alternatives based on user preferences and dietary requirements.",
|
164 |
-
"key_features": [
|
165 |
-
"Barcode scanning integration",
|
166 |
-
"Nutrition analysis engine",
|
167 |
-
"Personalized recommendation algorithm",
|
168 |
-
"Alternative product matching"
|
169 |
-
],
|
170 |
-
"technical_details": {
|
171 |
-
"data_processing": "Real-time nutrition label analysis",
|
172 |
-
"ml_models": "Custom recommendation engine using collaborative and content-based filtering",
|
173 |
-
"user_profiling": "Dynamic preference learning system"
|
174 |
-
},
|
175 |
-
"skills_used": ["Python", "Computer Vision", "Machine Learning", "Recommendation Systems"],
|
176 |
-
"status": "Prototype development",
|
177 |
-
"target_impact": "Making healthy food choices more accessible and personalized"
|
178 |
-
},
|
179 |
-
{
|
180 |
-
"name": "AI Portfolio Assistant",
|
181 |
-
"description": "A sophisticated chatbot leveraging LLM technology to provide dynamic, context-aware responses about my professional journey and projects.",
|
182 |
-
"key_features": [
|
183 |
-
"Natural language understanding",
|
184 |
-
"Context-aware responses",
|
185 |
-
"Dynamic job description analysis"
|
186 |
-
],
|
187 |
-
"skills_used": ["Python", "LLMs", "Streamlit", "NLP"],
|
188 |
-
"status": "Deployed and actively enhanced"
|
189 |
-
}
|
190 |
-
],
|
191 |
-
"algorithm_practice_projects": [
|
192 |
-
{
|
193 |
-
"name": "University Admission Predictor",
|
194 |
-
"type": "Linear Regression Implementation",
|
195 |
-
"description": "Built from scratch to understand core regression concepts, helping Jamboree predict admission chances for international students.",
|
196 |
-
"technical_focus": "Custom implementation of linear regression without using sklearn",
|
197 |
-
"skills_developed": ["Statistical Analysis", "Algorithm Implementation", "Feature Engineering"],
|
198 |
-
"accuracy": "81% on test data",
|
199 |
-
"status": "Completed"
|
200 |
-
},
|
201 |
-
{
|
202 |
-
"name": "LoanTap Credit Assessment",
|
203 |
-
"type": "Logistic Regression Implementation",
|
204 |
-
"description": "Custom-built logistic regression model for credit worthiness prediction",
|
205 |
-
"technical_focus": "Implementation of logistic regression from scratch",
|
206 |
-
"skills_developed": ["Credit Risk Modeling", "Binary Classification", "Model Evaluation"],
|
207 |
-
"status": "Completed"
|
208 |
-
},
|
209 |
-
{
|
210 |
-
"name": "OLA Driver Retention Analysis",
|
211 |
-
"type": "Ensemble Learning",
|
212 |
-
"description": "Predictive modeling for driver churn using various ensemble techniques",
|
213 |
-
"technical_focus": "Implementation of multiple base models and ensemble methods",
|
214 |
-
"skills_developed": ["Ensemble Methods", "Feature Selection", "Model Comparison"],
|
215 |
-
"status": "Completed"
|
216 |
-
},
|
217 |
-
{
|
218 |
-
"name": "AdEase View Prediction",
|
219 |
-
"type": "Time Series Analysis",
|
220 |
-
"description": "Forecasting Wikipedia page views for optimal ad placement",
|
221 |
-
"technical_focus": "Implementation of time series models and forecasting techniques",
|
222 |
-
"skills_developed": ["Time Series Analysis", "Forecasting", "Data Preprocessing"],
|
223 |
-
"status": "Completed"
|
224 |
-
}
|
225 |
-
]
|
226 |
-
},
|
227 |
-
|
228 |
-
"personal_journey": {
|
229 |
-
"dietary_changes": "I transitioned to a vegetarian diet in 2021 but resumed eating non-veg in 2023 to address nutritional deficiencies.",
|
230 |
-
"life_changes": [
|
231 |
-
{
|
232 |
-
"date": "December 2023",
|
233 |
-
"event": "I relocated to Canada for advanced education."
|
234 |
-
}
|
235 |
-
],
|
236 |
-
"mindset": "I am resilient, adaptable, and innovation-driven. I thrive on challenges and use setbacks as opportunities for growth.",
|
237 |
-
"motto_or_vision": "To leverage AI/ML to create solutions that enhance user experiences while retaining the human touch."
|
238 |
-
},
|
239 |
-
"goals_and_aspirations": {
|
240 |
-
"short_term": [
|
241 |
-
"I want to master advanced machine learning techniques.",
|
242 |
-
"I aim to expand my portfolio with impactful projects.",
|
243 |
-
"I seek to secure a role as an ML engineer in Canada."
|
244 |
-
],
|
245 |
-
"long_term": [
|
246 |
-
"I plan to develop AI solutions that redefine retail and hospitality experiences.",
|
247 |
-
"I aspire to establish a successful AI startup.",
|
248 |
-
"I want to mentor aspiring AI professionals."
|
249 |
-
]
|
250 |
-
},
|
251 |
-
"frequently_asked_questions": [
|
252 |
-
{
|
253 |
-
"question": "Why did you transition from commerce to AI/ML?",
|
254 |
-
"answer": "The transition from commerce to AI/ML was a result of an unexpected turn in my career journey. After completing my bachelor's degree in commerce, I was fortunate to land a job at Cognizant Technology Solutions as a Programmer Trainee. Despite having no prior experience in coding or programming, coming from a core commerce background, my eagerness to learn and quick adaptability caught the attention of my trainers. CTS gave me an opportunity, and during the initial 45-day training period and assessment, I performed exceptionally well in Java, which helped me secure a position in the development team. This was a remarkable achievement, as many computer science graduates typically end up in support roles. However, after working for a year, I realized that while I had developed a passion for programming, I still felt disconnected from my original interest in business and commerce. I knew I had to find a way to combine both my love for programming and my interest in business. That's when I discovered data science and machine learning, which seemed like the perfect intersection. With this newfound clarity, I embarked on a journey to master AI/ML, and now, I am truly enjoying the blend of technology and business that this field offers."
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"question": "What unique qualities do you bring to the table?",
|
258 |
-
"answer": "I combine technical expertise with a fresh perspective, thanks to my diverse background. My adaptability and ability to think beyond conventional approaches are my biggest strengths."
|
259 |
-
},
|
260 |
-
{
|
261 |
-
"question": "What is your most innovative project?",
|
262 |
-
"answer": "The most innovative project is an AI-powered Point-of-Sale (POS) system designed to Reduce order time and order errors. I'm currently working with my college to secure intellectual property rights, so I can't disclose the full extent of its capabilities at this time. However, I'm confident that this project has the potential to significantly impact the restaurant industry."
|
263 |
-
}
|
264 |
-
],
|
265 |
-
"career_development": {
|
266 |
-
"short_term": [
|
267 |
-
"I aim to continue mastering ML concepts through projects and coursework.",
|
268 |
-
"I want to build a portfolio that highlights my ability to solve real-world problems.",
|
269 |
-
"I plan to secure an ML engineer role in retail or hospitality AI."
|
270 |
-
],
|
271 |
-
"long_term": [
|
272 |
-
"I intend to build AI tools that make a global impact in the retail sector.",
|
273 |
-
"I aspire to launch my own AI startup focused on innovative NLP applications.",
|
274 |
-
"I want to contribute to the AI/ML community by mentoring and sharing knowledge."
|
275 |
-
],
|
276 |
-
"perspectives": {
|
277 |
-
"market_outlook": {
|
278 |
-
"job_market": "I believe market conditions are less about timing and more about preparation. While the market may have its ups and downs, I focus on building strong skills and creating impactful projects. Quality efforts and continuous learning will always find opportunities.",
|
279 |
-
"value_proposition": "My unique combination of commerce background and technical skills allows me to understand both business needs and technical implementation, making me a valuable asset regardless of market conditions.",
|
280 |
-
"strategy": "I'm using this time to enhance my skills, build innovative projects, and stay ahead of industry trends. It's about creating value, not just seeking opportunities."
|
281 |
-
},
|
282 |
-
"learning_philosophy": "I believe in learning through practical implementation. Rather than just studying algorithms, I build projects from scratch to truly understand the concepts.",
|
283 |
-
"work_approach": "I focus on creating solutions that enhance human capabilities rather than replacing them. Every project I undertake aims to solve real-world problems.",
|
284 |
-
"career_perspective": "Success in tech isn't just about coding skills—it's about understanding business problems and creating meaningful solutions."
|
285 |
-
},
|
286 |
-
"common_queries": {
|
287 |
-
"weather": "I'm focused on ML/AI and career discussions. For weather information, I'd recommend checking local weather services.",
|
288 |
-
"market_conditions": "Rather than focusing on market conditions, I believe in creating value through continuous learning and practical projects. Would you like to know about my approach to standing out in any market?",
|
289 |
-
"general": "I'm Manyue's portfolio assistant, focused on discussing my professional journey, projects, and ML/AI expertise. For general queries, I'd encourage exploring more relevant resources."
|
290 |
-
}
|
291 |
-
}
|
292 |
-
|
293 |
-
}
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/resume.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d466a6b984032b748901a5f129d7ad1d1b91308d848fb102b16e9a1b9c30eb7d
|
3 |
+
size 101343
|
utils.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
|
5 |
+
def load_json(filename, folder="content"):
|
6 |
+
"""Load JSON data from specified folder"""
|
7 |
+
try:
|
8 |
+
with open(f"{folder}/{filename}.json", "r", encoding="utf-8") as f:
|
9 |
+
return json.load(f)
|
10 |
+
except Exception as e:
|
11 |
+
print(f"Error loading {filename}.json: {e}")
|
12 |
+
return {}
|
13 |
+
|
14 |
+
def save_json(data, filename, folder="content"):
|
15 |
+
"""Save JSON data to specified folder"""
|
16 |
+
try:
|
17 |
+
# Create folder if it doesn't exist
|
18 |
+
if not os.path.exists(folder):
|
19 |
+
os.makedirs(folder)
|
20 |
+
|
21 |
+
with open(f"{folder}/{filename}.json", "w", encoding="utf-8") as f:
|
22 |
+
json.dump(data, f, indent=2)
|
23 |
+
return True
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error saving {filename}.json: {e}")
|
26 |
+
return False
|
27 |
+
|
28 |
+
def file_to_data_uri(filepath, mime_type="application/pdf"):
|
29 |
+
"""Convert file to data URI"""
|
30 |
+
try:
|
31 |
+
with open(filepath, "rb") as f:
|
32 |
+
data = f.read()
|
33 |
+
b64 = base64.b64encode(data).decode("utf-8")
|
34 |
+
return f"data:{mime_type};base64,{b64}"
|
35 |
+
except Exception as e:
|
36 |
+
print(f"Error converting file to data URI: {e}")
|
37 |
+
return None
|
38 |
+
|
39 |
+
def image_to_data_uri(filepath, mime_type="image/jpeg"):
|
40 |
+
"""Convert image to data URI"""
|
41 |
+
try:
|
42 |
+
with open(filepath, "rb") as f:
|
43 |
+
data = f.read()
|
44 |
+
b64 = base64.b64encode(data).decode("utf-8")
|
45 |
+
return f"data:{mime_type};base64,{b64}"
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error converting image to data URI: {e}")
|
48 |
+
return None
|
49 |
+
|
50 |
+
def add_project(section, project_data):
|
51 |
+
"""Add a new project to a specific section"""
|
52 |
+
try:
|
53 |
+
# Load the current data
|
54 |
+
section_data = load_json(section)
|
55 |
+
|
56 |
+
# Add the new project
|
57 |
+
if "projects" not in section_data:
|
58 |
+
section_data["projects"] = []
|
59 |
+
|
60 |
+
section_data["projects"].append(project_data)
|
61 |
+
|
62 |
+
# Save the updated data
|
63 |
+
return save_json(section_data, section)
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error adding project to {section}: {e}")
|
66 |
+
return False
|
67 |
+
|
68 |
+
def update_project(section, project_index, project_data):
|
69 |
+
"""Update an existing project in a specific section"""
|
70 |
+
try:
|
71 |
+
# Load the current data
|
72 |
+
section_data = load_json(section)
|
73 |
+
|
74 |
+
# Check if the index is valid
|
75 |
+
if "projects" not in section_data or project_index >= len(section_data["projects"]):
|
76 |
+
print(f"Invalid project index: {project_index}")
|
77 |
+
return False
|
78 |
+
|
79 |
+
# Update the project
|
80 |
+
section_data["projects"][project_index] = project_data
|
81 |
+
|
82 |
+
# Save the updated data
|
83 |
+
return save_json(section_data, section)
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error updating project in {section}: {e}")
|
86 |
+
return False
|
87 |
+
|
88 |
+
def delete_project(section, project_index):
|
89 |
+
"""Delete a project from a specific section"""
|
90 |
+
try:
|
91 |
+
# Load the current data
|
92 |
+
section_data = load_json(section)
|
93 |
+
|
94 |
+
# Check if the index is valid
|
95 |
+
if "projects" not in section_data or project_index >= len(section_data["projects"]):
|
96 |
+
print(f"Invalid project index: {project_index}")
|
97 |
+
return False
|
98 |
+
|
99 |
+
# Delete the project
|
100 |
+
del section_data["projects"][project_index]
|
101 |
+
|
102 |
+
# Save the updated data
|
103 |
+
return save_json(section_data, section)
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error deleting project from {section}: {e}")
|
106 |
+
return False
|
107 |
+
|
108 |
+
def update_profile(profile_data):
|
109 |
+
"""Update the profile information"""
|
110 |
+
try:
|
111 |
+
return save_json(profile_data, "profile")
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error updating profile: {e}")
|
114 |
+
return False
|
115 |
+
|
116 |
+
def add_skill(section, category_index, skill):
|
117 |
+
"""Add a new skill to a specific category in a section"""
|
118 |
+
try:
|
119 |
+
# Load the current data
|
120 |
+
section_data = load_json(section)
|
121 |
+
|
122 |
+
# Check if the category index is valid
|
123 |
+
if "skills" not in section_data or category_index >= len(section_data["skills"]):
|
124 |
+
print(f"Invalid category index: {category_index}")
|
125 |
+
return False
|
126 |
+
|
127 |
+
# Add the skill
|
128 |
+
section_data["skills"][category_index]["items"].append(skill)
|
129 |
+
|
130 |
+
# Save the updated data
|
131 |
+
return save_json(section_data, section)
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Error adding skill to {section}: {e}")
|
134 |
+
return False
|
135 |
+
|
136 |
+
def update_section_intro(section, intro_text):
|
137 |
+
"""Update the introduction text of a section"""
|
138 |
+
try:
|
139 |
+
# Load the current data
|
140 |
+
section_data = load_json(section)
|
141 |
+
|
142 |
+
# Update the intro
|
143 |
+
section_data["intro"] = intro_text
|
144 |
+
|
145 |
+
# Save the updated data
|
146 |
+
return save_json(section_data, section)
|
147 |
+
except Exception as e:
|
148 |
+
print(f"Error updating intro for {section}: {e}")
|
149 |
+
return False
|