Update virtualhealth.py
Browse files- virtualhealth.py +33 -339
virtualhealth.py
CHANGED
@@ -1,108 +1,22 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""VirtualHealth.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1yVSYiPz-WUlO7U0uAKe9LmfMXHd5eyAA
|
8 |
-
"""
|
9 |
-
!pip install streamlit
|
10 |
-
|
11 |
import xgboost as xgb
|
12 |
import pickle
|
13 |
import numpy as np
|
14 |
import pandas as pd
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
model.load_model("symptom_disease_model.json")
|
19 |
-
|
20 |
-
# Load the label encoder
|
21 |
-
label_encoder = pickle.load(open("label_encoder.pkl", "rb"))
|
22 |
-
|
23 |
-
# Load symptom names (from preprocessed training data)
|
24 |
-
X_train = pd.read_csv("X_train.csv") # Get feature names
|
25 |
-
symptom_list = X_train.columns.tolist()
|
26 |
-
|
27 |
-
# Function to Predict Disease
|
28 |
-
def predict_disease(user_symptoms):
|
29 |
-
# Convert user symptoms into one-hot encoded format
|
30 |
-
input_vector = np.zeros(len(symptom_list))
|
31 |
-
|
32 |
-
for symptom in user_symptoms:
|
33 |
-
if symptom in symptom_list:
|
34 |
-
input_vector[symptom_list.index(symptom)] = 1
|
35 |
-
|
36 |
-
input_vector = input_vector.reshape(1, -1) # Reshape for model
|
37 |
-
|
38 |
-
# Predict disease (returns a numerical class)
|
39 |
-
predicted_class = model.predict(input_vector)[0]
|
40 |
-
|
41 |
-
# Convert number to disease name
|
42 |
-
predicted_disease = label_encoder.inverse_transform([predicted_class])[0]
|
43 |
-
|
44 |
-
return predicted_disease
|
45 |
-
|
46 |
-
# Example Usage
|
47 |
-
user_symptoms = ["itching", "skin_rash", "nodal_skin_eruptions"]
|
48 |
-
predicted_disease = predict_disease(user_symptoms)
|
49 |
-
print(f"Predicted Disease: {predicted_disease}")
|
50 |
-
|
51 |
-
!pip install zipfile36
|
52 |
-
import sys
|
53 |
-
if sys.version_info >= (3, 6):
|
54 |
-
import zipfile
|
55 |
-
else:
|
56 |
-
import zipfile36 as zipfile
|
57 |
-
import os
|
58 |
-
|
59 |
-
zip_file_path = '/content/disease symptom.zip' # Update with your path
|
60 |
-
extracted_dir = '/content' # Where to extract the files
|
61 |
-
|
62 |
-
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
63 |
-
zip_ref.extractall(extracted_dir)
|
64 |
-
|
65 |
-
# Load the precaution dataset
|
66 |
-
precaution_df = pd.read_csv("Disease precaution.csv")
|
67 |
-
|
68 |
-
# Convert to dictionary for fast lookup
|
69 |
-
precaution_dict = {}
|
70 |
-
for _, row in precaution_df.iterrows():
|
71 |
-
disease = row["Disease"].strip().lower()
|
72 |
-
precautions = [row[f"Precaution_{i}"] for i in range(1, 5) if pd.notna(row[f"Precaution_{i}"])]
|
73 |
-
precaution_dict[disease] = precautions
|
74 |
-
|
75 |
-
# Function to Get Precautions
|
76 |
-
def get_precautions(disease_name):
|
77 |
-
disease_name = disease_name.strip().lower()
|
78 |
-
return precaution_dict.get(disease_name, ["No precautions found"])
|
79 |
-
|
80 |
-
# Example Usage
|
81 |
-
precautions = get_precautions(predicted_disease)
|
82 |
-
print(f"Precautions for {predicted_disease}: {precautions}")
|
83 |
-
|
84 |
-
!pip install nltk
|
85 |
-
|
86 |
-
import re
|
87 |
import nltk
|
88 |
-
from nltk.corpus import stopwords
|
89 |
from nltk.tokenize import word_tokenize
|
|
|
|
|
90 |
|
91 |
-
# Download stopwords
|
92 |
nltk.download("stopwords")
|
93 |
nltk.download("punkt")
|
|
|
94 |
|
95 |
# Load English stopwords
|
96 |
stop_words = set(stopwords.words("english"))
|
97 |
-
nltk.download('punkt_tab')
|
98 |
-
|
99 |
-
import xgboost as xgb
|
100 |
-
import pickle
|
101 |
-
import numpy as np
|
102 |
-
import pandas as pd
|
103 |
-
import torch
|
104 |
-
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
105 |
-
import re # Import regex module for better input processing
|
106 |
|
107 |
# ============================
|
108 |
# 🔹 1. Load Pretrained Medical Q&A Model
|
@@ -112,18 +26,12 @@ tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
|
112 |
qa_model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
|
113 |
|
114 |
# ============================
|
115 |
-
# 🔹 2. Load Symptom Checker Model
|
116 |
# ============================
|
117 |
-
# Load trained XGBoost model from JSON
|
118 |
model = xgb.XGBClassifier()
|
119 |
-
model.load_model("symptom_disease_model.json")
|
120 |
-
|
121 |
-
|
122 |
-
# Load Corrected Label Encoder
|
123 |
-
label_encoder = pickle.load(open("label_encoder.pkl", "rb"))
|
124 |
-
|
125 |
-
# Load symptom names from training data
|
126 |
-
X_train = pd.read_csv("X_train.csv") # Get feature names
|
127 |
symptom_list = X_train.columns.tolist()
|
128 |
|
129 |
# ============================
|
@@ -145,34 +53,27 @@ def load_medical_context():
|
|
145 |
medical_context = load_medical_context()
|
146 |
|
147 |
# ============================
|
148 |
-
# 🔹 5. Doctor Database
|
149 |
# ============================
|
150 |
doctor_database = {
|
151 |
"malaria": [{"name": "Dr. Rajesh Kumar", "specialty": "Infectious Diseases", "location": "Apollo Hospital", "contact": "9876543210"}],
|
152 |
"diabetes": [{"name": "Dr. Anil Mehta", "specialty": "Endocrinologist", "location": "AIIMS Delhi", "contact": "9876543233"}],
|
153 |
"heart attack": [{"name": "Dr. Vikram Singh", "specialty": "Cardiologist", "location": "Medanta Hospital", "contact": "9876543255"}],
|
154 |
-
"hepatitis e": [{"name": "Dr. Sunil Agarwal", "specialty": "Hepatologist", "location": "Fortis Hospital", "contact": "9876543266"}],
|
155 |
-
"pneumonia": [{"name": "Dr. Priya Sharma", "specialty": "Pulmonologist", "location": "Max Healthcare", "contact": "9876543277"}],
|
156 |
-
"heartattack": [{"name": "Dr. Vikram Singh", "specialty": "Cardiologist", "location": "Medanta Hospital", "contact": "9876543255"}],
|
157 |
}
|
158 |
|
159 |
# ============================
|
160 |
-
# 🔹 6. Predict Disease from Symptoms
|
161 |
# ============================
|
162 |
def predict_disease(user_symptoms):
|
163 |
-
"""Predicts
|
164 |
input_vector = np.zeros(len(symptom_list))
|
165 |
|
166 |
for symptom in user_symptoms:
|
167 |
if symptom in symptom_list:
|
168 |
-
input_vector[symptom_list.index(symptom)] = 1
|
169 |
|
170 |
input_vector = input_vector.reshape(1, -1) # Reshape for model input
|
171 |
-
|
172 |
-
# Predict disease (returns a numerical class)
|
173 |
-
predicted_class = model.predict(input_vector)[0]
|
174 |
-
|
175 |
-
# Convert number to disease name
|
176 |
predicted_disease = label_encoder.inverse_transform([predicted_class])[0]
|
177 |
|
178 |
return predicted_disease
|
@@ -218,237 +119,30 @@ def book_appointment(disease):
|
|
218 |
# ============================
|
219 |
# 🔹 10. Handle User Queries
|
220 |
# ============================
|
221 |
-
def extract_treatment_from_context(disease):
|
222 |
-
"""Extracts treatment details for a given disease from `medical_context.txt`."""
|
223 |
-
with open("medical_context.txt", "r", encoding="utf-8") as file:
|
224 |
-
lines = file.readlines()
|
225 |
-
|
226 |
-
treatment_section = []
|
227 |
-
found_disease = False
|
228 |
-
found_treatment = False
|
229 |
-
|
230 |
-
for line in lines:
|
231 |
-
line = line.strip()
|
232 |
-
|
233 |
-
# Check if we found the disease name
|
234 |
-
if f"## {disease.lower()}" in line.lower():
|
235 |
-
found_disease = True
|
236 |
-
|
237 |
-
# If we found the disease, now look for "Treatment"
|
238 |
-
if found_disease and "**Treatment**" in line:
|
239 |
-
found_treatment = True
|
240 |
-
continue # Skip the "**Treatment**:" line itself
|
241 |
-
|
242 |
-
# If found, keep extracting treatment details
|
243 |
-
if found_treatment:
|
244 |
-
# Stop at blank line or the next section (## New Disease Name)
|
245 |
-
if line == "" or line.startswith("## "):
|
246 |
-
break
|
247 |
-
treatment_section.append(line)
|
248 |
-
|
249 |
-
return "\n".join(treatment_section) if treatment_section else None
|
250 |
-
|
251 |
-
|
252 |
-
def extract_disease_name(user_query):
|
253 |
-
"""Extracts the disease name by removing unnecessary words, but keeps medical terms."""
|
254 |
-
user_query_cleaned = re.sub(r"[^\w\s]", "", user_query.lower()) # Remove punctuation
|
255 |
-
words = word_tokenize(user_query_cleaned)
|
256 |
-
|
257 |
-
# Remove stopwords but keep diseases/symptoms
|
258 |
-
filtered_words = [word for word in words if word not in stop_words or word in common_symptoms]
|
259 |
-
|
260 |
-
return " ".join(filtered_words).strip()
|
261 |
-
|
262 |
-
def find_best_match(query, database):
|
263 |
-
"""Finds the best matching disease from the database based on query words."""
|
264 |
-
query_words = query.split() # Split query into words
|
265 |
-
|
266 |
-
# Check for exact match first
|
267 |
-
if query in database:
|
268 |
-
return query # Exact match found
|
269 |
-
|
270 |
-
# Check if any word in query exists in database keys
|
271 |
-
for disease in database:
|
272 |
-
for word in query_words:
|
273 |
-
if word in disease: # Partial match found
|
274 |
-
return disease
|
275 |
-
|
276 |
-
return None # No match found
|
277 |
-
|
278 |
-
|
279 |
def handle_user_query(user_query):
|
280 |
"""Handles user queries related to symptoms, diseases, and doctor appointments."""
|
281 |
-
|
282 |
user_query = user_query.lower().strip()
|
283 |
|
284 |
-
#
|
285 |
-
if "
|
286 |
-
|
287 |
-
disease = predict_disease(symptoms.split(", ")) # Convert to list
|
288 |
-
precautions = get_precautions(disease)
|
289 |
-
return f"**Predicted Disease:** {disease}\n**Precautions:** {', '.join(precautions)}\n{book_appointment(disease)}"
|
290 |
-
|
291 |
-
# Extract Disease Name for Queries
|
292 |
-
user_query_cleaned = extract_disease_name(user_query)
|
293 |
-
|
294 |
-
# Handle "Who should I see for..." Queries (Improved with Partial Matching)
|
295 |
-
if "who should i see " in user_query:
|
296 |
-
disease_query = user_query.replace("who should i see", "").strip()
|
297 |
-
disease = find_best_match(disease_query, doctor_database) # Get best match
|
298 |
-
|
299 |
-
if disease:
|
300 |
-
doctor = doctor_database[disease][0]
|
301 |
-
return f"You should see a **{doctor['specialty']}** for {disease}.\nExample: {doctor['name']} at {doctor['location']}."
|
302 |
-
else:
|
303 |
-
return "I'm not sure. Please consult a general physician for more guidance."
|
304 |
-
|
305 |
-
# Book Appointment (Improved with Partial Matching)
|
306 |
-
elif "book appointment" in user_query_cleaned:
|
307 |
-
disease_query = user_query_cleaned.replace("book appointment", "").strip()
|
308 |
-
disease = find_best_match(disease_query, doctor_database)
|
309 |
-
return book_appointment(disease) if disease else "Sorry, no matching doctor found."
|
310 |
-
|
311 |
-
# Symptoms Query
|
312 |
-
elif "symptoms" in user_query_cleaned or "signs" in user_query_cleaned:
|
313 |
-
disease = user_query_cleaned.replace("symptoms", "").replace("signs", "").strip()
|
314 |
return get_medical_answer(f"What are the symptoms of {disease}?")
|
315 |
|
316 |
-
#
|
317 |
-
elif "
|
318 |
-
disease =
|
319 |
-
return "
|
320 |
-
|
321 |
-
# Treatment Query
|
322 |
-
if "treatment" in user_query_cleaned or "treat" in user_query_cleaned:
|
323 |
-
disease = user_query_cleaned.replace("treatment", "").replace("treat", "").strip()
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
return model_answer
|
335 |
|
336 |
-
#
|
337 |
else:
|
338 |
-
|
339 |
-
if response in ["<s>", "", "No reliable answer found."]:
|
340 |
-
return "I'm not sure, but you may consult a specialist for better guidance."
|
341 |
-
return response
|
342 |
-
|
343 |
-
# ============================
|
344 |
-
# 🔹 11. Test Cases (Run Examples)
|
345 |
-
# ============================
|
346 |
-
print(handle_user_query("I have fever, chills, and muscle aches")) # Should predict disease & precautions
|
347 |
-
print(handle_user_query("What are the symptoms of pneumonia?")) # Should return pneumonia symptoms
|
348 |
-
print(handle_user_query("Book an appointment for diabetes")) # Should book a diabetes specialist
|
349 |
-
print(handle_user_query("Who should I see for heart attack")) # Should return "Cardiologist"
|
350 |
-
print(handle_user_query("what is the treatment for tuberculosis")) # Should return correct treatment
|
351 |
-
|
352 |
-
print(handle_user_query("What is the treatment for tuberculosis?")) # Should return correct treatment
|
353 |
-
print(handle_user_query("What is the treatment for malaria?")) # Should also work
|
354 |
-
print(handle_user_query("What is the treatment for cancer?")) # Should return something useful
|
355 |
-
|
356 |
-
print(handle_user_query("What is the treatment for tuberculosis?")) # Should return correct treatment
|
357 |
-
print(handle_user_query("What is the treatment for malaria?")) # Should also work
|
358 |
-
print(handle_user_query("What is the treatment for cancer?")) # Should return something useful
|
359 |
-
print(handle_user_query("How to treat diabetes?")) # Should return proper treatment
|
360 |
-
print(handle_user_query("Tell me the cure for pneumonia?")) # Should return treatment
|
361 |
-
print(handle_user_query("Treatment for typhoid?")) # Should extract treatment
|
362 |
-
|
363 |
-
print(handle_user_query("What are the symptoms of pneumonia?")) # Should return correct symptoms
|
364 |
-
print(handle_user_query("Signs of heart attack?")) # Should return expected symptoms
|
365 |
-
print(handle_user_query("How do I know if I have typhoid?")) # Should return typhoid symptoms
|
366 |
-
print(handle_user_query("What symptoms should I check for tuberculosis?")) # Should work
|
367 |
-
print(handle_user_query("Symptoms of dengue?")) # Should return symptoms of dengue
|
368 |
-
|
369 |
-
print(handle_user_query("Who should I see for a heart attack?")) # Should return "Cardiologist"
|
370 |
-
print(handle_user_query("Which doctor should I visit for diabetes?")) # Should return "Endocrinologist"
|
371 |
-
print(handle_user_query("Who should I consult for a skin rash?")) # Should return "Dermatologist"
|
372 |
-
print(handle_user_query("What kind of doctor treats pneumonia?")) # Should return "Pulmonologist"
|
373 |
-
print(handle_user_query("Who specializes in treating migraines?")) # Should return "Neurologist"
|
374 |
-
|
375 |
-
print(handle_user_query("Book an appointment for malaria")) # Should book doctor for malaria
|
376 |
-
print(handle_user_query("I need a doctor for high blood pressure")) # Should book doctor for hypertension
|
377 |
-
print(handle_user_query("Schedule a consultation for fever")) # Should book general physician
|
378 |
-
print(handle_user_query("Find a doctor for diabetes treatment")) # Should book endocrinologist
|
379 |
-
print(handle_user_query("Book an appointment for pneumonia treatment")) # Should book pulmonologist
|
380 |
-
|
381 |
-
print(handle_user_query("I have fever, cough, and chills")) # Should predict disease correctly
|
382 |
-
print(handle_user_query("Experiencing blurry vision and excessive thirst")) # Should return "Diabetes"
|
383 |
-
print(handle_user_query("I am experiencing severe chest pain and difficulty breathing")) # Should return "Heart Attack"
|
384 |
-
print(handle_user_query("Feeling tired, cold, and gaining weight")) # Should return "Hypothyroidism"
|
385 |
-
print(handle_user_query("I have rash, joint pain, and headache")) # Should return "Dengue"
|
386 |
-
|
387 |
-
print(handle_user_query("What does a doctor do?")) # Should return general doctor description
|
388 |
-
print(handle_user_query("What are antibiotics?")) # Should explain antibiotics
|
389 |
-
print(handle_user_query("How does the immune system work?")) # Should explain immunity
|
390 |
-
print(handle_user_query("What is the function of the liver?")) # Should explain liver function
|
391 |
-
print(handle_user_query("Explain how blood pressure works?")) # Should provide useful explanation
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
# Commented out IPython magic to ensure Python compatibility.
|
397 |
-
# %%writefile app.py
|
398 |
-
# import streamlit as st
|
399 |
-
# import requests
|
400 |
-
#
|
401 |
-
# st.set_page_config(page_title="AI Health Assistant", page_icon="🤖")
|
402 |
-
#
|
403 |
-
# st.title("🩺 AI Health Assistant")
|
404 |
-
# st.write("Ask any medical-related questions:")
|
405 |
-
#
|
406 |
-
# # User Input
|
407 |
-
# user_input = st.text_input("Your Question:")
|
408 |
-
#
|
409 |
-
# # Button to Send Query
|
410 |
-
# if st.button("Ask"):
|
411 |
-
# response = requests.post("https://b7da-35-232-247-117.ngrok-free.app/query/", json={"user_input": user_input})
|
412 |
-
# bot_response = response.json().get("response", "Error fetching response")
|
413 |
-
#
|
414 |
-
# st.markdown(f"**🤖 Bot:** {bot_response}")
|
415 |
-
#
|
416 |
-
|
417 |
-
"""✅ Steps to Deploy on Hugging Face Spaces
|
418 |
-
📌 Step 1: Create a Hugging Face Space
|
419 |
-
1️⃣ Go to Hugging Face Spaces
|
420 |
-
2️⃣ Click "New Space"
|
421 |
-
3️⃣ Name the Space (e.g., AI-Health-Assistant)
|
422 |
-
4️⃣ Select "Streamlit" as the SDK
|
423 |
-
5️⃣ Click "Create Space" ✅
|
424 |
-
|
425 |
-
📌 Step 2: Clone the Repository Locally
|
426 |
-
After creating the Space, clone it to your local machine or Google Colab:
|
427 |
-
|
428 |
-
```bash
|
429 |
-
git clone https://huggingface.co/spaces/YOUR_USERNAME/AI-Health-Assistant
|
430 |
-
cd AI-Health-Assistant
|
431 |
-
```
|
432 |
-
Replace YOUR_USERNAME with your Hugging Face username!
|
433 |
-
|
434 |
-
📌 Step 3: Add app.py (Your Streamlit Chatbot)
|
435 |
-
Inside the cloned folder, create app.py and paste the following:
|
436 |
-
|
437 |
-
📌 Step 4: Create requirements.txt
|
438 |
-
Create a new file requirements.txt inside the same folder and add:
|
439 |
-
```bash
|
440 |
-
streamlit
|
441 |
-
requests
|
442 |
-
```
|
443 |
-
|
444 |
-
📌 Step 5: Push Your Code to Hugging Face
|
445 |
-
Run these commands to push the code:
|
446 |
-
|
447 |
-
```bash
|
448 |
-
git add .
|
449 |
-
git commit -m "Initial commit"
|
450 |
-
git push
|
451 |
-
```
|
452 |
-
🚀 Your Space will automatically start building!
|
453 |
-
"""
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import xgboost as xgb
|
2 |
import pickle
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import streamlit as st
|
7 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import nltk
|
|
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
import re
|
12 |
|
13 |
+
# 🔹 Download stopwords only when needed
|
14 |
nltk.download("stopwords")
|
15 |
nltk.download("punkt")
|
16 |
+
nltk.download('punkt_tab')
|
17 |
|
18 |
# Load English stopwords
|
19 |
stop_words = set(stopwords.words("english"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# ============================
|
22 |
# 🔹 1. Load Pretrained Medical Q&A Model
|
|
|
26 |
qa_model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
|
27 |
|
28 |
# ============================
|
29 |
+
# 🔹 2. Load Symptom Checker Model
|
30 |
# ============================
|
|
|
31 |
model = xgb.XGBClassifier()
|
32 |
+
model.load_model("symptom_disease_model.json") # Load trained model
|
33 |
+
label_encoder = pickle.load(open("label_encoder.pkl", "rb")) # Load label encoder
|
34 |
+
X_train = pd.read_csv("X_train.csv") # Load symptoms
|
|
|
|
|
|
|
|
|
|
|
35 |
symptom_list = X_train.columns.tolist()
|
36 |
|
37 |
# ============================
|
|
|
53 |
medical_context = load_medical_context()
|
54 |
|
55 |
# ============================
|
56 |
+
# 🔹 5. Doctor Database
|
57 |
# ============================
|
58 |
doctor_database = {
|
59 |
"malaria": [{"name": "Dr. Rajesh Kumar", "specialty": "Infectious Diseases", "location": "Apollo Hospital", "contact": "9876543210"}],
|
60 |
"diabetes": [{"name": "Dr. Anil Mehta", "specialty": "Endocrinologist", "location": "AIIMS Delhi", "contact": "9876543233"}],
|
61 |
"heart attack": [{"name": "Dr. Vikram Singh", "specialty": "Cardiologist", "location": "Medanta Hospital", "contact": "9876543255"}],
|
|
|
|
|
|
|
62 |
}
|
63 |
|
64 |
# ============================
|
65 |
+
# 🔹 6. Predict Disease from Symptoms
|
66 |
# ============================
|
67 |
def predict_disease(user_symptoms):
|
68 |
+
"""Predicts disease based on user symptoms using the trained XGBoost model."""
|
69 |
input_vector = np.zeros(len(symptom_list))
|
70 |
|
71 |
for symptom in user_symptoms:
|
72 |
if symptom in symptom_list:
|
73 |
+
input_vector[symptom_list.index(symptom)] = 1
|
74 |
|
75 |
input_vector = input_vector.reshape(1, -1) # Reshape for model input
|
76 |
+
predicted_class = model.predict(input_vector)[0] # Predict disease
|
|
|
|
|
|
|
|
|
77 |
predicted_disease = label_encoder.inverse_transform([predicted_class])[0]
|
78 |
|
79 |
return predicted_disease
|
|
|
119 |
# ============================
|
120 |
# 🔹 10. Handle User Queries
|
121 |
# ============================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
def handle_user_query(user_query):
|
123 |
"""Handles user queries related to symptoms, diseases, and doctor appointments."""
|
|
|
124 |
user_query = user_query.lower().strip()
|
125 |
|
126 |
+
# Check if query is about symptoms
|
127 |
+
if "symptoms" in user_query or "signs" in user_query:
|
128 |
+
disease = user_query.replace("symptoms", "").replace("signs", "").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
return get_medical_answer(f"What are the symptoms of {disease}?")
|
130 |
|
131 |
+
# Check if query is about treatment
|
132 |
+
elif "treatment" in user_query or "treat" in user_query:
|
133 |
+
disease = user_query.replace("treatment", "").replace("treat", "").strip()
|
134 |
+
return get_medical_answer(f"What is the treatment for {disease}?")
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
# Check for doctor recommendation
|
137 |
+
elif "who should i see" in user_query:
|
138 |
+
disease = user_query.replace("who should i see for", "").strip()
|
139 |
+
return book_appointment(disease)
|
140 |
|
141 |
+
# Check for appointment booking
|
142 |
+
elif "book appointment" in user_query:
|
143 |
+
disease = user_query.replace("book appointment for", "").strip()
|
144 |
+
return book_appointment(disease)
|
|
|
145 |
|
146 |
+
# Default case: general medical question
|
147 |
else:
|
148 |
+
return get_medical_answer(user_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|