File size: 17,946 Bytes
0bc84fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import gc
import itertools
import logging
import os
import random
from copy import deepcopy
from typing import TYPE_CHECKING, Literal

import torch
import torch.nn.functional as F
import transformers
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers.optimization import get_scheduler
from einops import rearrange
from PIL import Image
from safetensors.torch import load_file
from torch.utils.data import DataLoader
from tqdm import tqdm

from uno.dataset.uno import FluxPairedDatasetV2
from uno.flux.sampling import denoise, get_noise, get_schedule, prepare_multi_ip, unpack
from uno.flux.util import load_ae, load_clip, load_flow_model, load_t5, set_lora

if TYPE_CHECKING:
    from uno.flux.model import Flux
    from uno.flux.modules.autoencoder import AutoEncoder
    from uno.flux.modules.conditioner import HFEmbedder

logger = get_logger(__name__)

def get_models(name: str, device, offload: bool=False):
    t5 = load_t5(device, max_length=512)
    clip = load_clip(device)
    model = load_flow_model(name, device="cpu")
    vae = load_ae(name, device="cpu" if offload else device)
    return model, vae, t5, clip

def inference(
    batch: dict,
    model: "Flux", t5: "HFEmbedder", clip: "HFEmbedder", ae: "AutoEncoder",
    accelerator: Accelerator,
    seed: int = 0,
    pe: Literal["d", "h", "w", "o"] = "d"
) -> Image.Image:
    ref_imgs = batch["ref_imgs"]
    prompt = batch["txt"]
    neg_prompt = ''
    width, height = 512, 512
    num_steps = 25
    x = get_noise(
        1, height, width,
        device=accelerator.device,
        dtype=torch.bfloat16,
        seed=seed + accelerator.process_index
    )
    timesteps = get_schedule(
        num_steps,
        (width // 8) * (height // 8) // (16 * 16),
        shift=True,
    )
    with torch.no_grad():
        ref_imgs = [
            ae.encode(ref_img_.to(accelerator.device, torch.float32)).to(torch.bfloat16)
            for ref_img_ in ref_imgs
        ]
        inp_cond = prepare_multi_ip(
            t5=t5, clip=clip, img=x, prompt=prompt,
            ref_imgs=ref_imgs,
            pe=pe
        )
        neg_inp_cond = prepare_multi_ip(
            t5=t5, clip=clip, img=x, prompt=neg_prompt,
            ref_imgs=ref_imgs,
            pe=pe
        )

        x = denoise(
            model,
            **inp_cond,
            timesteps=timesteps,
            guidance=4,
            timestep_to_start_cfg=30,
            neg_txt=neg_inp_cond['txt'],
            neg_txt_ids=neg_inp_cond['txt_ids'],
            neg_vec=neg_inp_cond['vec'],
            true_gs=3.5,
            image_proj=None,
            neg_image_proj=None,
            ip_scale=1,
            neg_ip_scale=1
        )

        x = unpack(x.float(), height, width)
        x = ae.decode(x)

    x1 = x.clamp(-1, 1)
    x1 = rearrange(x1[-1], "c h w -> h w c")
    output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())

    return output_img


def resume_from_checkpoint(
    resume_from_checkpoint: str | None | Literal["latest"],
    project_dir: str,
    accelerator: Accelerator,
    dit: "Flux",
    optimizer: torch.optim.Optimizer,
    lr_scheduler: torch.optim.lr_scheduler.LRScheduler,
    dit_ema_dict: dict | None = None,
) -> tuple["Flux", torch.optim.Optimizer, torch.optim.lr_scheduler.LRScheduler, dict | None, int]:
    # Potentially load in the weights and states from a previous save
    if resume_from_checkpoint is None:
        return dit, optimizer, lr_scheduler, dit_ema_dict, 0

    if resume_from_checkpoint == "latest":
        # Get the most recent checkpoint
        dirs = os.listdir(project_dir)
        dirs = [d for d in dirs if d.startswith("checkpoint")]
        dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
        if len(dirs) == 0:
            accelerator.print(
                f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            return dit, optimizer, lr_scheduler, dit_ema_dict, 0
        path = dirs[-1]
    else:
        path = os.path.basename(resume_from_checkpoint)
        

    accelerator.print(f"Resuming from checkpoint {path}")
    lora_state = load_file(os.path.join(project_dir, path, 'dit_lora.safetensors'), device=accelerator.device)
    unwarp_dit = accelerator.unwrap_model(dit)
    unwarp_dit.load_state_dict(lora_state, strict=False)
    if dit_ema_dict is not None:
        dit_ema_dict = load_file(
            os.path.join(project_dir, path, 'dit_lora_ema.safetensors'),
            device=accelerator.device
        )
        if dit is not unwarp_dit:
            dit_ema_dict = {f"module.{k}": v for k, v in dit_ema_dict.items() if k in unwarp_dit.state_dict()}

    global_step = int(path.split("-")[1])
    
    return dit, optimizer, lr_scheduler, dit_ema_dict, global_step

@dataclasses.dataclass
class TrainArgs:
    ## accelerator
    project_dir: str | None = None
    mixed_precision: Literal["no", "fp16", "bf16"] = "bf16"
    gradient_accumulation_steps: int = 1,
    seed: int = 42
    wandb_project_name: str | None = None
    wandb_run_name: str | None = None

    ## model
    model_name: Literal["flux", "flux-schnell"] = "flux"
    lora_rank: int = 512
    double_blocks_indices: list[int] | None = dataclasses.field(
        default=None,
        metadata={"help": "Indices of double blocks to apply LoRA. None means all double blocks."}
    )
    single_blocks_indices: list[int] | None = dataclasses.field(
        default=None,
        metadata={"help": "Indices of double blocks to apply LoRA. None means all single blocks."}
    )
    pe: Literal["d", "h", "w", "o"] = "d",
    gradient_checkpoint: bool = False

    ## ema
    ema: bool = False
    ema_interval: int = 1
    ema_decay: float = 0.99


    ## optimizer
    learning_rate: float = 1e-2
    adam_betas: list[float] = dataclasses.field(default_factory=lambda: [0.9, 0.999])
    adam_eps: float = 1e-8
    adam_weight_decay: float = 0.01

    ## lr_scheduler
    lr_scheduler: str = "constant"
    lr_warmup_steps: int = 100
    max_train_steps: int = 100000

    ## dataloader
    train_data_json: str = "datasets/dreambench_singleip.json" # TODO: change to your own dataset, or use one data syenthsize pipeline comming in the future. stay tuned 
    batch_size: int = 1
    text_dropout: float = 0.1
    resolution: int = 512
    resolution_ref: int | None = None

    eval_data_json: str = "datasets/dreambench_singleip.json"
    eval_batch_size: int = 1

    ## misc
    resume_from_checkpoint: str | None | Literal["latest"] = None
    checkpointing_steps: int = 1000

def main(
    args: TrainArgs,
):
    ## accelerator
    deepspeed_plugins = {
        "dit": DeepSpeedPlugin(hf_ds_config='config/deepspeed/zero2_config.json'),
        "t5": DeepSpeedPlugin(hf_ds_config='config/deepspeed/zero3_config.json'),
        "clip": DeepSpeedPlugin(hf_ds_config='config/deepspeed/zero3_config.json')
    }
    accelerator = Accelerator(
        project_dir=args.project_dir,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        deepspeed_plugins=deepspeed_plugins,
        log_with="wandb",
    )
    set_seed(args.seed, device_specific=True)
    accelerator.init_trackers(
        project_name=args.wandb_project_name,
        config=args.__dict__,
        init_kwargs={
            "wandb": {
                "name": args.wandb_run_name,
                "dir": accelerator.project_dir,
            },
        },
    )
    weight_dtype = {
        "fp16": torch.float16,
        "bf16": torch.bfloat16,
        "no": torch.float32,
    }.get(accelerator.mixed_precision, torch.float32)

    ## logger
    logging.basicConfig(
        format=f"[RANK {accelerator.process_index}] " + "%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
        force=True
    )
    logger.info(accelerator.state)
    logger.info("Training script launched", main_process_only=False)

    ## model
    dit, vae, t5, clip = get_models(
        name=args.model_name,
        device=accelerator.device,
    )
    
    vae.requires_grad_(False)
    t5.requires_grad_(False)
    clip.requires_grad_(False)

    dit.requires_grad_(False)
    dit = set_lora(dit, args.lora_rank, args.double_blocks_indices, args.single_blocks_indices, accelerator.device)
    dit.train()
    dit.gradient_checkpointing = args.gradient_checkpoint

    ## optimizer and lr scheduler
    optimizer = torch.optim.AdamW(
        [p for p in dit.parameters() if p.requires_grad],
        lr=args.learning_rate,
        betas=args.adam_betas,
        weight_decay=args.adam_weight_decay,
        eps=args.adam_eps,
    )
    
    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
    )

    # dataloader
    dataset = FluxPairedDatasetV2(
        data_json=args.train_data_json,
        resolution=args.resolution, resolution_ref=args.resolution_ref
    )
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
    eval_dataset = FluxPairedDatasetV2(
        data_json=args.eval_data_json,
        resolution=args.resolution, resolution_ref=args.resolution_ref
    )   
    eval_dataloader = DataLoader(eval_dataset, batch_size=args.eval_batch_size, shuffle=False)

    dataloader = accelerator.prepare_data_loader(dataloader)
    eval_dataloader = accelerator.prepare_data_loader(eval_dataloader)
    dataloader = itertools.cycle(dataloader)  # as infinite fetch data loader

    ## parallel
    dit = accelerator.prepare_model(dit)
    optimizer = accelerator.prepare_optimizer(optimizer)
    lr_scheduler = accelerator.prepare_scheduler(lr_scheduler)
    accelerator.state.select_deepspeed_plugin("t5")
    t5 = accelerator.prepare_model(t5)
    accelerator.state.select_deepspeed_plugin("clip")
    clip = accelerator.prepare_model(clip)
    
    ## ema
    dit_ema_dict = {
        k: deepcopy(v).requires_grad_(False) for k, v in dit.named_parameters() if v.requires_grad
    } if args.ema else None

    ## resume
    (
        dit,
        optimizer,
        lr_scheduler,
        dit_ema_dict,
        global_step
    ) = resume_from_checkpoint(
        args.resume_from_checkpoint,
        project_dir=args.project_dir,
        accelerator=accelerator,
        dit=dit,
        optimizer=optimizer,
        lr_scheduler=lr_scheduler,
        dit_ema_dict=dit_ema_dict
    )

    ## noise scheduler
    timesteps = get_schedule(
        999,
        (args.resolution // 8) * (args.resolution // 8) // 4,
        shift=True,
    )
    timesteps = torch.tensor(timesteps, device=accelerator.device)
    total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Instantaneous batch size per device = {args.batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    logger.info(f"  Total validation prompts = {len(eval_dataloader)}")

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=global_step,
        desc="Steps",
        total=args.max_train_steps,
        disable=not accelerator.is_local_main_process,
    )

    train_loss = 0.0
    while global_step < (args.max_train_steps):
        batch = next(dataloader)
        prompts = [txt_ if random.random() > args.text_dropout else "" for txt_ in batch["txt"]]
        img = batch["img"]
        ref_imgs = batch["ref_imgs"]

        with torch.no_grad():
            x_1 = vae.encode(img.to(accelerator.device).to(torch.float32))
            x_ref = [vae.encode(ref_img.to(accelerator.device).to(torch.float32)) for ref_img in ref_imgs]
            inp = prepare_multi_ip(t5=t5, clip=clip, img=x_1, prompt=prompts, ref_imgs=tuple(x_ref), pe=args.pe)
            x_1 = rearrange(x_1, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
            x_ref = [rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) for x in x_ref]

            bs = img.shape[0]
            t = torch.randint(0, 1000, (bs,), device=accelerator.device)
            t = timesteps[t]
            x_0 = torch.randn_like(x_1, device=accelerator.device)
            x_t = (1 - t[:, None, None]) * x_1 + t[:, None, None] * x_0
            guidance_vec = torch.full((x_t.shape[0],), 1, device=x_t.device, dtype=x_t.dtype)
        
        with accelerator.accumulate(dit):
            # Predict the noise residual and compute loss
            model_pred = dit(
                img=x_t.to(weight_dtype),
                img_ids=inp['img_ids'].to(weight_dtype),
                ref_img=[x.to(weight_dtype) for x in x_ref],
                ref_img_ids=[ref_img_id.to(weight_dtype) for ref_img_id in inp['ref_img_ids']],
                txt=inp['txt'].to(weight_dtype),
                txt_ids=inp['txt_ids'].to(weight_dtype),
                y=inp['vec'].to(weight_dtype),
                timesteps=t.to(weight_dtype),
                guidance=guidance_vec.to(weight_dtype)
            )

            loss = F.mse_loss(model_pred.float(), (x_0 - x_1).float(), reduction="mean")

            # Gather the losses across all processes for logging (if we use distributed training).
            avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
            train_loss += avg_loss.item() / args.gradient_accumulation_steps

            # Backpropagate
            accelerator.backward(loss)
            if accelerator.sync_gradients:
                accelerator.clip_grad_norm_(dit.parameters(), args.max_grad_norm)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()

        # Checks if the accelerator has performed an optimization step behind the scenes
        if accelerator.sync_gradients:
            progress_bar.update(1)
            global_step += 1
            accelerator.log({"train_loss": train_loss}, step=global_step)
            train_loss = 0.0

        if accelerator.sync_gradients and dit_ema_dict is not None and global_step % args.ema_interval == 0:
            src_dict = dit.state_dict()
            for tgt_name in dit_ema_dict:
                dit_ema_dict[tgt_name].data.lerp_(src_dict[tgt_name].to(dit_ema_dict[tgt_name]), 1 - args.ema_decay)

        if accelerator.sync_gradients and accelerator.is_main_process and global_step % args.checkpointing_steps == 0:
            logger.info(f"saving checkpoint in {global_step=}")
            save_path = os.path.join(args.project_dir, f"checkpoint-{global_step}")
            os.makedirs(save_path, exist_ok=True)

            # save
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(dit)
            unwrapped_model_state = unwrapped_model.state_dict()
            unwrapped_model_state = {k: v for k, v in unwrapped_model_state.items() if v.requires_grad}

            accelerator.save(
                unwrapped_model_state,
                os.path.join(save_path, 'dit_lora.safetensors'),
                safe_serialization=True
            )
            unwrapped_opt = accelerator.unwrap_model(optimizer)
            accelerator.save(unwrapped_opt.state_dict(), os.path.join(save_path, 'optimizer.bin'))
            logger.info(f"Saved state to {save_path}")

            if args.ema:
                accelerator.save(
                    {k.split("module.")[-1]: v for k, v in dit_ema_dict.items()},
                    os.path.join(save_path, 'dit_lora_ema.safetensors')
                )

            # validate
            dit.eval()
            torch.set_grad_enabled(False)
            for i, batch in enumerate(eval_dataloader):
                result = inference(batch, dit, t5, clip, vae, accelerator, seed=0)
                accelerator.log({f"eval_gen_{i}": result}, step=global_step)


            if args.ema:
                original_state_dict = dit.state_dict()
                dit.load_state_dict(dit_ema_dict, strict=False)
                for batch in eval_dataloader:
                    result = inference(batch, dit, t5, clip, vae, accelerator, seed=0)
                    accelerator.log({f"eval_ema_gen_{i}": result}, step=global_step)
                dit.load_state_dict(original_state_dict, strict=False)
            
            torch.cuda.empty_cache()
            gc.collect()
            torch.set_grad_enabled(True)
            dit.train()
            accelerator.wait_for_everyone()

        logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
        progress_bar.set_postfix(**logs)
    
    accelerator.wait_for_everyone()
    accelerator.end_training()

if __name__ == "__main__":
    parser = transformers.HfArgumentParser([TrainArgs])
    args_tuple = parser.parse_args_into_dataclasses(args_file_flag="--config")
    main(*args_tuple)