File size: 5,314 Bytes
2e36fa3
 
 
 
 
945bc2c
2e36fa3
 
 
 
 
 
945bc2c
2e36fa3
 
 
 
 
 
 
 
945bc2c
2e36fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945bc2c
2e36fa3
 
 
 
 
 
 
 
 
945bc2c
2e36fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945bc2c
2e36fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
945bc2c
2e36fa3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import postprocess_completion, get_majority_vote

# Define the model and tokenizer loading
model_prompt = "Solve the following mathematical problem: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 10

# Function to generate predictions using the model
def get_prediction(question):
    input_text = model_prompt + question
    input_tokens = tokenizer.tokenize(input_text)
    results = generator.generate_batch([input_tokens])
    output_tokens = results[0].sequences[0]
    predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
    return predicted_answer

# Function to perform majority voting and solve the problem with steps
def majority_vote_with_steps(question, num_iterations=10):
    all_predictions = []
    all_answer = []
    steps_to_solve = []
    
    for _ in range(num_iterations):
        prediction = get_prediction(question)
        # Process prediction to get steps and answer
        answer, success = postprocess_completion(prediction, True, True)
        all_predictions.append(prediction)
        all_answer.append(answer)
        if success:
            steps_to_solve.append(answer)  # Add the steps if code executes successfully
    
    majority_voted_ans = get_majority_vote(all_answer)
    
    # If steps to solve exist, return them, else fallback to "No steps found"
    steps_solution = steps_to_solve[0] if steps_to_solve else "No steps found"
    
    return majority_voted_ans, steps_solution

# Gradio interface for user input and output
def gradio_interface(question, correct_answer):
    final_answer, steps_solution = majority_vote_with_steps(question, iterations)
    return {
        "Question": question,
        "Majority-Voted Answer": final_answer,
        "Steps to Solve": steps_solution,
        "Correct Solution": correct_answer
    }

# Custom CSS for enhanced design
custom_css = """
    body {
        background-color: #fafafa;
        font-family: 'Open Sans', sans-serif;
    }
    .gradio-container {
        background-color: #ffffff;
        border: 3px solid #007acc;
        border-radius: 15px;
        padding: 20px;
        box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
        max-width: 800px;
        margin: 50px auto;
    }
    h1 {
        font-family: 'Poppins', sans-serif;
        color: #007acc;
        font-weight: bold;
        font-size: 32px;
        text-align: center;
        margin-bottom: 20px;
    }
    p {
        font-family: 'Roboto', sans-serif;
        font-size: 18px;
        color: #333;
        text-align: center;
        margin-bottom: 15px;
    }
    input, textarea {
        font-family: 'Montserrat', sans-serif;
        font-size: 16px;
        padding: 10px;
        border: 2px solid #007acc;
        border-radius: 10px;
        background-color: #f1f8ff;
        margin-bottom: 15px;
    }
    #math_question, #correct_answer {
        font-size: 20px;
        font-family: 'Poppins', sans-serif;
        font-weight: 500px;  /* Apply bold */
        color: #007acc;
        margin-bottom: 5px;
        display: inline-block;
    }
    
    textarea {
        min-height: 150px;
    }
    .gr-button-primary {
        background-color: #007acc !important;
        color: white !important;
        border-radius: 10px !important;
        font-size: 18px !important;
        font-weight: bold !important;
        padding: 10px 20px !important;
        font-family: 'Montserrat', sans-serif !important;
        transition: background-color 0.3s ease !important;
    }
    .gr-button-primary:hover {
        background-color: #005f99 !important;
    }
    .gr-button-secondary {
        background-color: #f44336 !important;
        color: white !important;
        border-radius: 10px !important;
        font-size: 18px !important;
        font-weight: bold !important;
        padding: 10px 20px !important;
        font-family: 'Montserrat', sans-serif !important;
        transition: background-color 0.3s ease !important;
    }
    .gr-button-secondary:hover {
        background-color: #c62828 !important;
    }
    .gr-output {
        background-color: #e0f7fa;
        border: 2px solid #007acc;
        border-radius: 10px;
        padding: 15px;
        font-size: 16px;
        font-family: 'Roboto', sans-serif;
        font-weight: bold;
        color: #00796b;
    }
"""

# Gradio app setup
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
        gr.Textbox(label="βœ… Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"),
    ],
    outputs=[
        gr.JSON(label="πŸ“Š Results"),  # Display the results in a JSON format
    ],
    title="πŸ”’ Math Question Solver",
    description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.",
    css=custom_css  # Apply custom CSS
)

if __name__ == "__main__":
    interface.launch()