init
Browse files- app.py +71 -0
- requirements.txt +3 -0
- rf_model.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
# Load the model
|
6 |
+
rf_model = joblib.load("rf_model.pkl")
|
7 |
+
|
8 |
+
features = {
|
9 |
+
"CD4": [0, 500, 1],
|
10 |
+
"AST/ALT": [0, 100, 1],
|
11 |
+
"ALT": [0, 2000, 1],
|
12 |
+
"Hb": [1, 150, 1],
|
13 |
+
"CRP": [1, 500, 1],
|
14 |
+
"ALB": [10, 50, 1],
|
15 |
+
"POAL": [0, 1, 1],
|
16 |
+
"ALC": [0, 5, 1],
|
17 |
+
"Age (years)": [12, 100, 1],
|
18 |
+
"WBC": [0, 20, 1],
|
19 |
+
"PLT": [1, 800, 1],
|
20 |
+
"AST": [0, 2000, 1],
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
# Define the inference function
|
25 |
+
def predict(*args):
|
26 |
+
try:
|
27 |
+
# Convert input values to numpy array
|
28 |
+
input_values = [float(arg) for arg in args]
|
29 |
+
|
30 |
+
# Reshape to (1, n_features)
|
31 |
+
input_array = np.array(input_values).reshape(1, -1)
|
32 |
+
|
33 |
+
# Use the model for inference
|
34 |
+
prediction_proba = rf_model.predict_proba(input_array)
|
35 |
+
prediction = rf_model.predict(input_array)
|
36 |
+
|
37 |
+
# Get the confidence of the prediction being class 1 (probability)
|
38 |
+
confidence = prediction_proba[0][1]
|
39 |
+
|
40 |
+
# Return the result
|
41 |
+
if prediction[0] == 1:
|
42 |
+
return f"Prediction: 1\nConfidence: {confidence:.2f}"
|
43 |
+
else:
|
44 |
+
return f"Prediction: 0\nConfidence: {confidence:.2f}"
|
45 |
+
except Exception as e:
|
46 |
+
return f"Inference error: {str(e)}"
|
47 |
+
|
48 |
+
|
49 |
+
# Create Gradio interface
|
50 |
+
inputs = [
|
51 |
+
gr.Number(value=v[0], label=k, minimum=v[0], maximum=v[1], step=v[2])
|
52 |
+
for k, v in features.items()
|
53 |
+
] # Dynamically generate input components
|
54 |
+
outputs = gr.Textbox(label="Inference Result") # Output component
|
55 |
+
|
56 |
+
# create queue
|
57 |
+
interface = gr.Interface(
|
58 |
+
fn=predict, # Inference function
|
59 |
+
inputs=inputs, # Dynamically generated input components
|
60 |
+
outputs=outputs, # Output component
|
61 |
+
title="Random Forest Model Inference", # Interface title
|
62 |
+
description="Input feature values to get the model's inference result.", # Interface description
|
63 |
+
live=False, # Whether to update in real-time (set to False, requires button click)
|
64 |
+
flagging_mode="never",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Enable queue
|
68 |
+
interface.queue()
|
69 |
+
|
70 |
+
# Launch the app
|
71 |
+
interface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
joblib
|
2 |
+
gradio
|
3 |
+
numpy
|
rf_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b84b76ac8818fc3243df79eb164e4e878a5704de54699574d89f6ed5b524a7cb
|
3 |
+
size 2015641
|