Spaces:
Running
Running
import os | |
import torch | |
import streamlit as st | |
from PIL import Image | |
from torchvision import transforms | |
from transformers import AutoModelForImageSegmentation | |
def load_model(model_id_or_path="briaai/RMBG-2.0", precision=0, device="cuda"): | |
model = AutoModelForImageSegmentation.from_pretrained( | |
model_id_or_path, trust_remote_code=True | |
) | |
torch.set_float32_matmul_precision(["high", "highest"][precision]) | |
model.to(device) | |
_ = model.eval() | |
# Data settings | |
image_size = (1024, 1024) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
return model, transform_image | |
def process(image: Image.Image) -> Image.Image: | |
if "RMBG-2.0" not in os.listdir("."): | |
os.system( | |
"modelscope download --model AI-ModelScope/RMBG-2.0 --local_dir RMBG-2.0 --exclude *.onnx *.bin" | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
precision = 0 | |
model, transform = load_model("RMBG-2.0", precision=precision, device=device) | |
image = image.copy() | |
input_images = transform(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
preds = model(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image.size) | |
image.putalpha(mask) | |
return mask, image | |