Lhumpal commited on
Commit
08a4aab
·
verified ·
1 Parent(s): b471855

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -8
app.py CHANGED
@@ -45,7 +45,7 @@ def retrieve(query, vectorstore, top_k=5):
45
  return [
46
  (doc.page_content, float(score)) # Ensure score is a standard float
47
  for doc, score in docs_and_scores
48
- if float(score) <= 100
49
  ]
50
 
51
 
@@ -66,10 +66,6 @@ class ChatRequest(BaseModel):
66
  dataset = load_dataset("Lhumpal/youtube-hunting-beast-transcripts", data_files={"concise": "concise/*", "raw": "raw/*"})
67
  concise_text = dataset["concise"]["text"]
68
  concise_text_string = "".join(concise_text)
69
- sample = "Big bucks like to bed in the tall grass and shade in the summer."
70
- concise_text_string += sample
71
- print(concise_text_string)
72
-
73
 
74
  # Chunk and index the documents
75
  chunks = chunk_text(concise_text_string, chunk_size=250)
@@ -103,8 +99,8 @@ async def chat(request: ChatRequest):
103
 
104
 
105
  # Retrieve relevant text
106
- docs = retrieve(request.message, vectorstore, top_k=5)
107
- # formatted_results = "\n\n".join(filtered_docs)
108
 
109
  rag_prompt = f"""Use the following information to answer the user's query. You do not have to use all the information, just the pieces that directly
110
  help answer the query most accurately. Start directly with information, NOT with a rhetorical question. Respond in a conversational manner.
@@ -119,6 +115,8 @@ async def chat(request: ChatRequest):
119
 
120
  You have access to the following relevant information retrieved based on the user's query:
121
 
 
 
122
  Using the information above, answer the user's query as accurately as possible:
123
 
124
  Query: {request.message}
@@ -144,7 +142,7 @@ async def chat(request: ChatRequest):
144
  del request.chat_history[-1]
145
  request.chat_history.append({"role": "user", "parts": [{"text": request.message}]})
146
 
147
- return {"response": response.text, "dataset_str": concise_text_string[:150], "docs": docs, "history": request.chat_history, "RAG_prompt": rag_prompt, "chunks": chunks}
148
 
149
  if request.model_choice == "HF":
150
  if hf_token:
 
45
  return [
46
  (doc.page_content, float(score)) # Ensure score is a standard float
47
  for doc, score in docs_and_scores
48
+ if float(score) <= 0.75
49
  ]
50
 
51
 
 
66
  dataset = load_dataset("Lhumpal/youtube-hunting-beast-transcripts", data_files={"concise": "concise/*", "raw": "raw/*"})
67
  concise_text = dataset["concise"]["text"]
68
  concise_text_string = "".join(concise_text)
 
 
 
 
69
 
70
  # Chunk and index the documents
71
  chunks = chunk_text(concise_text_string, chunk_size=250)
 
99
 
100
 
101
  # Retrieve relevant text
102
+ docs, scores = retrieve(request.message, vectorstore, top_k=5)
103
+ docs = "\n\n".join(docs)
104
 
105
  rag_prompt = f"""Use the following information to answer the user's query. You do not have to use all the information, just the pieces that directly
106
  help answer the query most accurately. Start directly with information, NOT with a rhetorical question. Respond in a conversational manner.
 
115
 
116
  You have access to the following relevant information retrieved based on the user's query:
117
 
118
+ {docs}
119
+
120
  Using the information above, answer the user's query as accurately as possible:
121
 
122
  Query: {request.message}
 
142
  del request.chat_history[-1]
143
  request.chat_history.append({"role": "user", "parts": [{"text": request.message}]})
144
 
145
+ return {"response": response.text, "dataset_str": concise_text_string, "docs": docs, "history": request.chat_history, "RAG_prompt": rag_prompt, "chunks": chunks}
146
 
147
  if request.model_choice == "HF":
148
  if hf_token: