Code-roaster / app.py
LearninwithAK's picture
Update app.py
4ca0eef verified
import gradio as gr
import requests
import os
import logging
import re
import random
import json
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# ======= CODE ANALYSIS CLASS ========
class CodeRoaster:
def __init__(self):
# Roast templates for different levels
self.roast_templates = {
"Mild": [
"I see some opportunities for improvement in this code. It's not bad, but we can make it better!",
"This code would benefit from a few tweaks. Let me show you how.",
"Your code works, but there are some best practices we could apply here."
],
"Medium": [
"This code looks like it was written the night before a deadline. Time for some tough love!",
"I've seen better code written by first-year CS students. Let's clean this up.",
"Your code needs a serious makeover. It's like showing up to a wedding in sweatpants."
],
"Savage": [
"This code is what happens when Stack Overflow answers are copied without understanding. Pure chaos!",
"Did you write this code during a power outage? While blindfolded? On a keyboard missing half its keys?",
"If this code were a restaurant dish, Gordon Ramsay would throw it in the trash and shut down the kitchen."
]
}
# Issue templates for different languages
self.python_issue_detectors = [
{
'pattern': r"range\s*\(\s*0\s*,",
'issue': "unnecessary zero in range",
'suggestion': "range() starts at 0 by default, so range(0, n) can be simplified to range(n)",
'fix': lambda code: re.sub(r"range\s*\(\s*0\s*,\s*([^\)]+)\)", r"range(\1)", code)
},
{
'pattern': r"print\s*\(",
'issue': "print statements used for output",
'suggestion': "Consider using logging for better control in production environments",
'fix': lambda code: code # No automatic fix
},
{
'pattern': r"if\s+\*\*name\*\*\s+==",
'issue': "incorrect __name__ syntax",
'suggestion': 'Use if __name__ == "__main__": instead of if **name** == "__main__":',
'fix': lambda code: re.sub(r"if\s+\*\*name\*\*\s+==", r"if __name__ ==", code)
},
{
'pattern': r"def\s+\w+\s*\([^\)]*\)\s*:\s*(?!\n\s*[\"\'])",
'issue': "missing docstring",
'suggestion': "Add docstrings to functions explaining purpose, parameters and return values",
'fix': lambda code: code # No automatic fix, requires understanding function purpose
},
{
'pattern': r" [^\n]+",
'issue': "inconsistent indentation",
'suggestion': "Use consistent indentation (4 spaces per level is the Python standard)",
'fix': lambda code: re.sub(r" (?! {2})", r" ", code)
},
{
'pattern': r"except:",
'issue': "bare except clause",
'suggestion': "Specify exceptions to catch instead of using a bare except clause",
'fix': lambda code: re.sub(r"except:", r"except Exception:", code)
},
{
'pattern': r"from\s+\w+\s+import\s+\*",
'issue': "wildcard import",
'suggestion': "Import specific modules or functions instead of using wildcard imports",
'fix': lambda code: code # No automatic fix, requires knowledge of what's needed
},
{
'pattern': r"i\s*\+=\s*1",
'issue': "manual index increment in loop",
'suggestion': "Consider using enumerate() for clean iteration with indices",
'fix': lambda code: code # No automatic fix, requires restructuring
},
{
'pattern': r"with\s+open\([^,]+\)\s+as",
'issue': "missing file mode in open()",
'suggestion': "Specify the file mode in open(filename, mode)",
'fix': lambda code: re.sub(r"with\s+open\(([^,]+)\)\s+as", r"with open(\1, 'r') as", code)
}
]
self.js_issue_detectors = [
{
'pattern': r"var\s+",
'issue': "using var instead of let/const",
'suggestion': "Use let for variables that change and const for variables that don't change",
'fix': lambda code: re.sub(r"var\s+", r"let ", code) # Simple replacement, not always correct
},
{
'pattern': r"==(?!=)",
'issue': "loose equality operators",
'suggestion': "Use === instead of == for strict equality checking",
'fix': lambda code: re.sub(r"==(?!=)", r"===", code)
},
{
'pattern': r"console\.log\(",
'issue': "console.log statements left in code",
'suggestion': "Remove console.log statements before production deployment",
'fix': lambda code: code # No automatic fix
},
{
'pattern': r"document\.write\(",
'issue': "using document.write",
'suggestion': "Avoid document.write as it can overwrite the entire document",
'fix': lambda code: code # No automatic fix
},
{
'pattern': r"setTimeout\(\s*function\s*\(\)\s*{\s*},\s*0\)",
'issue': "setTimeout with 0 delay",
'suggestion': "Consider using requestAnimationFrame instead for browser animations",
'fix': lambda code: code # No automatic fix
}
]
self.generic_issue_detectors = [
{
'pattern': r"(.{80,})\n",
'issue': "lines exceeding 80 characters",
'suggestion': "Keep lines under 80 characters for better readability",
'fix': lambda code: code # No automatic fix, requires manual line splitting
},
{
'pattern': r"(\/\/|\#)\s*TODO",
'issue': "TODO comments in code",
'suggestion': "Resolve TODO comments before considering code complete",
'fix': lambda code: code # No automatic fix
},
{
'pattern': r"[^\w](\w{1,2})[^\w]",
'issue': "short variable names",
'suggestion': "Use descriptive variable names that explain their purpose",
'fix': lambda code: code # No automatic fix, requires understanding context
}
]
def detect_language(self, code):
"""Detect what programming language the code is written in"""
# Python detection
if "def " in code or "import " in code or "class " in code and ":" in code:
return "Python"
# JavaScript detection
elif "function " in code or "var " in code or "let " in code or "const " in code:
return "JavaScript"
# Unknown language
else:
return "unknown"
def analyze_code(self, code, language):
"""Analyze code for issues based on detected language"""
issues = []
suggestions = []
fix_functions = []
# Select appropriate detectors based on language
if language == "Python":
detectors = self.python_issue_detectors + self.generic_issue_detectors
elif language == "JavaScript":
detectors = self.js_issue_detectors + self.generic_issue_detectors
else:
detectors = self.generic_issue_detectors
# Apply each detector
for detector in detectors:
if re.search(detector['pattern'], code):
issues.append(detector['issue'])
suggestions.append(detector['suggestion'])
fix_functions.append(detector['fix'])
# Check for missing newline at end of file
if code.count('\n') > 3 and not code.strip().endswith('\n'):
issues.append("missing newline at end of file")
suggestions.append("Add a newline at the end of the file (standard best practice)")
fix_functions.append(lambda code: code + '\n')
return issues, suggestions, fix_functions
def generate_roast(self, issues, level):
"""Generate a roast message based on the issues found and the roast level"""
base_roast = random.choice(self.roast_templates[level])
if issues:
if level == "Mild":
roast = f"{base_roast}\n\nI noticed these {len(issues)} issues that could be improved: {', '.join(issues)}."
elif level == "Medium":
roast = f"{base_roast}\n\nSpecifically, I found {len(issues)} issues that need attention: {', '.join(issues)}."
else: # Savage
roast = f"{base_roast}\n\nThis masterpiece of chaos has {len(issues)} issues: {', '.join(issues)}."
else:
if level == "Mild":
roast = f"{base_roast}\n\nYour code is actually pretty clean, but there are always ways to improve."
elif level == "Medium":
roast = f"{base_roast}\n\nSurprisingly, your code doesn't have major issues, but let's not celebrate too early."
else: # Savage
roast = f"{base_roast}\n\nI was ready to demolish this code, but it's... acceptable. Don't get used to compliments."
return roast
def fix_code(self, code, fix_functions):
"""Apply all fix functions to the code"""
fixed_code = code
for fix_func in fix_functions:
fixed_code = fix_func(fixed_code)
return fixed_code
def generate_explanation(self, issues, suggestions, language):
"""Generate an explanation of the issues and suggestions"""
explanation = "Here's what I found and improved:\n\n"
if issues:
for i, (issue, suggestion) in enumerate(zip(issues, suggestions)):
explanation += f"{i+1}. **{issue.capitalize()}**: {suggestion}\n"
else:
explanation += "- Made minor formatting improvements for better readability\n"
if language != "unknown":
explanation += f"\nYour code appears to be written in {language}. "
explanation += "\nWriting clean, consistent code helps with maintainability and reduces bugs!"
return explanation
def roast_code(self, code, roast_level):
"""Main function to analyze, roast and fix code"""
if not code.strip():
return "Please enter some code to roast.", "No code provided.", "Nothing to fix."
try:
# Detect language
language = self.detect_language(code)
logger.info(f"Detected language: {language}")
# Analyze code
issues, suggestions, fix_functions = self.analyze_code(code, language)
logger.info(f"Found {len(issues)} issues")
# Generate roast
roast = self.generate_roast(issues, roast_level)
# Fix code
fixed_code = self.fix_code(code, fix_functions)
# Generate explanation
explanation = self.generate_explanation(issues, suggestions, language)
return roast, fixed_code, explanation
except Exception as e:
logger.error(f"Error analyzing code: {str(e)}")
return (
f"Oops! Something went wrong while roasting your code: {str(e)}",
code,
"Error generating explanation."
)
# ======= HUGGING FACE API INTEGRATION ========
def call_huggingface_api(code, roast_level, api_key, model_name):
if not code.strip():
return "Please enter some code to roast.", "No code provided.", "Nothing to fix."
if not api_key.strip():
return "Please enter a valid Hugging Face API key.", code, "API key is required."
try:
logger.info(f"Calling Hugging Face API with model: {model_name}")
# Create different prompts based on roast level
roast_level_descriptions = {
"Mild": "gentle but humorous",
"Medium": "moderately sarcastic and pointed",
"Savage": "brutally honest and hilariously critical"
}
# Better prompt format with less chance of format confusion
prompt = f"""You're a senior software engineer reviewing this code:
```
{code}
```
Respond with THREE separate sections:
1. ROAST: Give a {roast_level_descriptions[roast_level]} code review. Be humorous but point out real issues.
2. FIXED_CODE: Provide an improved version of the code.
3. EXPLANATION: Explain what was improved and why it matters.
Start each section with the heading exactly as shown above.
"""
# API URL based on selected model
API_URL = f"https://api-inference.huggingface.co/models/{model_name}"
# Set up the headers with API key
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# Set up the payload
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 2048,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1.2,
"stop": ["<|endoftext|>", "</s>"]
}
}
# Make the API call
response = requests.post(API_URL, headers=headers, json=payload)
# Check if the request was successful
if response.status_code != 200:
logger.error(f"API Error: {response.status_code} - {response.text}")
return f"Error: {response.status_code} - {response.text}", code, "API call failed."
# Extract the response text
try:
response_text = response.json()[0]["generated_text"]
logger.info(f"Raw API response received with length: {len(response_text)}")
# Remove the original prompt if it's included in the response
if prompt in response_text:
response_text = response_text.replace(prompt, "")
# Now extract each section using regex
roast_match = re.search(r"ROAST:(.*?)(?=FIXED_CODE:|$)", response_text, re.DOTALL)
code_match = re.search(r"FIXED_CODE:(.*?)(?=EXPLANATION:|$)", response_text, re.DOTALL)
explanation_match = re.search(r"EXPLANATION:(.*?)$", response_text, re.DOTALL)
# Extract content from matches
roast = roast_match.group(1).strip() if roast_match else "Failed to generate roast."
# For the code section, also look for code blocks
if code_match:
code_section = code_match.group(1).strip()
# Try to extract code between triple backticks if present
code_block_match = re.search(r"```(?:\w+)?\n(.*?)```", code_section, re.DOTALL)
if code_block_match:
fixed_code = code_block_match.group(1).strip()
else:
# If no code blocks, use the whole section
fixed_code = code_section
else:
fixed_code = "Failed to generate fixed code."
explanation = explanation_match.group(1).strip() if explanation_match else "Failed to generate explanation."
# If sections are still missing or empty, provide default messages
if not roast or roast == "":
roast = "The model didn't generate a proper roast. Try again or use local mode."
if not fixed_code or fixed_code == "":
fixed_code = code
if not explanation or explanation == "":
explanation = "The model didn't generate a proper explanation. Try again or use local mode."
logger.info("Successfully parsed response from Hugging Face API")
return roast, fixed_code, explanation
except Exception as e:
logger.error(f"Error parsing API response: {e}")
logger.error(f"Response content: {response.content[:500]}") # Log first 500 chars
return "Error parsing API response", code, f"Error details: {str(e)}"
except Exception as e:
logger.error(f"Error calling Hugging Face API: {str(e)}")
return (
f"Oops! Something went wrong while roasting your code: {str(e)}",
code,
"Error generating explanation."
)
# ======= MAIN ROASTING FUNCTION ========
def roast_code(code, roast_level, use_api, api_key="", model_choice="Mistral-7B"):
# Map model choice to actual model name
model_map = {
"Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.2",
"Falcon-7B": "tiiuae/falcon-7b-instruct",
"Llama-2-7B": "meta-llama/Llama-2-7b-chat-hf",
"CodeLlama-7B": "codellama/CodeLlama-7b-instruct-hf"
}
model_name = model_map.get(model_choice, model_map["Mistral-7B"])
if use_api and api_key.strip():
# Use the API with specified model
logger.info(f"Using API with model: {model_name}")
return call_huggingface_api(code, roast_level, api_key, model_name)
else:
# Use the local analysis
logger.info("Using local code analysis")
roaster = CodeRoaster()
return roaster.roast_code(code, roast_level)
# ======= GRADIO INTERFACE ========
def create_interface():
with gr.Blocks(title="AI Roast My Code") as app:
gr.Markdown("# πŸ”₯ AI Roast My Code πŸ”₯")
gr.Markdown("Let our AI roast your code, fix it, and teach you - all while making you laugh!")
with gr.Row():
with gr.Column(scale=3):
code_input = gr.Textbox(
label="Your Code",
lines=15
)
with gr.Column(scale=1):
roast_level = gr.Radio(
choices=["Mild", "Medium", "Savage"],
label="Roast Level",
value="Medium"
)
use_api = gr.Checkbox(label="Use Hugging Face API", value=True)
with gr.Group(visible=True) as api_settings:
api_key = gr.Textbox(
label="Hugging Face API Key",
type="password",
value=os.environ.get("HF_API_KEY", "")
)
model_choice = gr.Dropdown(
choices=["Mistral-7B", "Falcon-7B", "Llama-2-7B", "CodeLlama-7B"],
label="Model",
value="Mistral-7B",
info="Select which LLM to use for code analysis"
)
submit_btn = gr.Button("πŸ”₯ Roast My Code!", variant="primary")
# Function to toggle API settings visibility
def toggle_api_settings(use_api):
return gr.Group.update(visible=use_api)
use_api.change(fn=toggle_api_settings, inputs=use_api, outputs=api_settings)
# Output Sections
with gr.Row():
loading_indicator = gr.Textbox(label="Status", value="")
with gr.Tab("Roast πŸ”₯"):
roast_output = gr.Textbox(label="Roast", lines=5)
with gr.Tab("Fixed Code βœ…"):
fixed_code_output = gr.Textbox(label="Fixed Code", lines=10)
with gr.Tab("Explanation πŸ“"):
explanation_output = gr.Textbox(label="Explanation", lines=5)
# Example code
example_python_code = '''def calculate_fibonacci(n):
# This function calculates the fibonacci sequence
result = []
a, b = 0, 1
for i in range(0, n):
result.append(a)
a, b = b, a + b
return result
if **name** == "__main__":
print("Fibonacci Sequence:")
print(calculate_fibonacci(10))
'''
# Event handlers
def load_example():
return example_python_code
def clear_inputs():
return ""
def show_loading():
return "⏳ AI is analyzing your code and preparing a roast. This may take a few moments..."
def hide_loading():
return "βœ… Roast complete! Check the tabs below for results."
# Set up buttons for examples and clearing
with gr.Row():
example_btn = gr.Button("Load Example Code")
clear_btn = gr.Button("Clear")
example_btn.click(fn=load_example, outputs=code_input)
clear_btn.click(fn=clear_inputs, outputs=code_input)
# Main submit button with loading state
submit_btn.click(
fn=show_loading,
outputs=loading_indicator
).then(
fn=roast_code,
inputs=[code_input, roast_level, use_api, api_key, model_choice],
outputs=[roast_output, fixed_code_output, explanation_output]
).then(
fn=hide_loading,
outputs=loading_indicator
)
# About Section
gr.Markdown("""
### πŸ€– How It Works
"AI Roast My Code" can work in two modes:
1. **API Mode**: Uses the Hugging Face API with various models to provide advanced code analysis
- Multiple model options including Mistral, Falcon, Llama-2, and CodeLlama
- Requires a Hugging Face API key
2. **Local Mode**: Uses built-in pattern matching for basic code analysis (no API needed)
- Works completely offline
- No API key required
- Detects common issues in Python and JavaScript
The app will:
1. **Analyze** your code for problems, anti-patterns, and style issues
2. **Roast** it with humor that ranges from gentle to savage (you choose!)
3. **Fix** the issues and provide an improved version
4. **Explain** what was wrong and how it was improved
### πŸ“ Note
- For educational purposes only - always review generated code before using it
""")
return app
# Main function
def main():
try:
logger.info("Starting AI Roast My Code...")
# Create the interface
app = create_interface()
# Launch the app
logger.info("Launching Gradio interface...")
app.launch(share=True)
except Exception as e:
logger.error(f"Error launching application: {str(e)}")
raise
if __name__ == "__main__":
main()