Spaces:
Runtime error
Runtime error
LayBraid
commited on
Commit
·
ae92333
1
Parent(s):
b2c2198
:construction: update app
Browse files- requirements.txt +3 -1
- text_to_image.py +48 -1
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
streamlit==1.2.0
|
2 |
transformers~=4.19.4
|
3 |
-
numpy~=1.22.2
|
|
|
|
|
|
1 |
streamlit==1.2.0
|
2 |
transformers~=4.19.4
|
3 |
+
numpy~=1.22.2
|
4 |
+
nmslib~=2.1.1
|
5 |
+
Pillow~=9.0.1
|
text_to_image.py
CHANGED
@@ -1,16 +1,63 @@
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import streamlit as st
|
|
|
3 |
from transformers import CLIPProcessor, FlaxCLIPModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
def get_image(text):
|
7 |
model = FlaxCLIPModel.from_pretrained("flax-community/clip-rsicd-v2")
|
8 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
|
9 |
|
10 |
inputs = processor(text=[text], image=None, return_tensors="jax", padding=True)
|
11 |
|
12 |
vector = model.get_text_features(**inputs)
|
13 |
vector = np.asarray(vector)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
def app():
|
@@ -20,5 +67,5 @@ def app():
|
|
20 |
text = st.text_input("Enter text: ")
|
21 |
|
22 |
if st.button("Search"):
|
23 |
-
|
24 |
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
import numpy as np
|
4 |
import streamlit as st
|
5 |
+
from PIL import Image
|
6 |
from transformers import CLIPProcessor, FlaxCLIPModel
|
7 |
+
import nmslib
|
8 |
+
|
9 |
+
|
10 |
+
def load_index(image_vector_file):
|
11 |
+
filenames, image_vecs = [], []
|
12 |
+
fvec = open(image_vector_file, "r")
|
13 |
+
for line in fvec:
|
14 |
+
cols = line.strip().split(' ')
|
15 |
+
filename = cols[0]
|
16 |
+
image_vec = np.array([float(x) for x in cols[1].split(',')])
|
17 |
+
filenames.append(filename)
|
18 |
+
image_vecs.append(image_vec)
|
19 |
+
V = np.array(image_vecs)
|
20 |
+
index = nmslib.init(method='hnsw', space='cosinesimil')
|
21 |
+
index.addDataPointBatch(V)
|
22 |
+
index.createIndex({'post': 2}, print_progress=True)
|
23 |
+
return filenames, index
|
24 |
+
|
25 |
+
|
26 |
+
def load_captions(caption_file):
|
27 |
+
image2caption = {}
|
28 |
+
with open(caption_file, "r") as fcap:
|
29 |
+
for line in fcap:
|
30 |
+
data = json.loads(line.strip())
|
31 |
+
filename = data["filename"]
|
32 |
+
captions = data["captions"]
|
33 |
+
image2caption[filename] = captions
|
34 |
+
return image2caption
|
35 |
|
36 |
|
37 |
def get_image(text):
|
38 |
model = FlaxCLIPModel.from_pretrained("flax-community/clip-rsicd-v2")
|
39 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
40 |
+
filename, index = load_index("./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv")
|
41 |
+
image2caption = load_captions("./images/test-captions.json")
|
42 |
|
43 |
inputs = processor(text=[text], image=None, return_tensors="jax", padding=True)
|
44 |
|
45 |
vector = model.get_text_features(**inputs)
|
46 |
vector = np.asarray(vector)
|
47 |
+
ids, distances = index.knnQuery(vector, k=10)
|
48 |
+
result_filenames = [filename[id] for id in ids]
|
49 |
+
for rank, (result_filename, score) in enumerate(zip(result_filenames, distances)):
|
50 |
+
caption = "{:s} (score: {:.3f})".format(result_filename, 1.0 - score)
|
51 |
+
col1, col2, col3 = st.columns([2, 10, 10])
|
52 |
+
col1.markdown("{:d}.".format(rank + 1))
|
53 |
+
col2.image(Image.open(os.path.join("./images", result_filename)),
|
54 |
+
caption=caption)
|
55 |
+
caption_text = []
|
56 |
+
for caption in image2caption[result_filename]:
|
57 |
+
caption_text.append("* {:s}".format(caption))
|
58 |
+
col3.markdown("".join(caption_text))
|
59 |
+
st.markdown("---")
|
60 |
+
suggest_idx = -1
|
61 |
|
62 |
|
63 |
def app():
|
|
|
67 |
text = st.text_input("Enter text: ")
|
68 |
|
69 |
if st.button("Search"):
|
70 |
+
get_image(text)
|
71 |
|