Spaces:
Runtime error
Runtime error
File size: 8,638 Bytes
1d1e811 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
import numpy as np
import random
from PIL import Image
import spaces
import torch
from huggingface_hub import hf_hub_download, HfApi
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
import os
api = HfApi(
token=os.getenv('HF_TOKEN'), # Token is not persisted on the machine.
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
token=os.getenv('HF_TOKEN'),
).to("cuda")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
"ostris/Flex.1-alpha-Redux",
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=torch.bfloat16
).to("cuda")
examples = [[Image.open("mona_lisa.jpg"), "pink hair, at the beach", None, "", 0.035, 1., 1., 1., 1., 0, False],
[Image.open("1665_Girl_with_a_Pearl_Earring.jpg"), "", Image.open("dali_example.jpg"), "", 0.08, .4, .6, .33, 1., 1912857110, False]]
@spaces.GPU
def infer(control_image, prompt, image_2, prompt_2, reference_scale= 0.03 ,
prompt_embeds_scale_1 =1, prompt_embeds_scale_2 =1, pooled_prompt_embeds_scale_1 =1, pooled_prompt_embeds_scale_2 =1,
seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image_2 is not None:
pipe_prior_output = pipe_prior_redux([control_image, image_2],
prompt=[prompt, prompt_2],
prompt_embeds_scale = [prompt_embeds_scale_1, prompt_embeds_scale_2],
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2])
else:
pipe_prior_output = pipe_prior_redux(control_image, prompt=prompt, prompt_embeds_scale = [prompt_embeds_scale_1],
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1])
cond_size = 729
hidden_size = 4096
max_sequence_length = 512
full_attention_size = max_sequence_length + hidden_size + cond_size
attention_mask = torch.zeros(
(full_attention_size, full_attention_size), device="cuda", dtype=torch.bfloat16
)
bias = torch.log(
torch.tensor(reference_scale, dtype=torch.bfloat16, device="cuda").clamp(min=1e-5, max=1)
)
attention_mask[:, max_sequence_length : max_sequence_length + cond_size] = bias
joint_attention_kwargs=dict(attention_mask=attention_mask)
images = pipe(
guidance_scale=guidance_scale,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=torch.Generator("cpu").manual_seed(seed),
joint_attention_kwargs=joint_attention_kwargs,
**pipe_prior_output,
).images[0]
return images, seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# ⚡️ Fast FLUX.1 Redux [dev] ⚡️
An adapter for FLUX [dev] to create image variations combined with ByteDance [
Hyper FLUX 8 Steps LoRA](https://huggingface.co./ByteDance/Hyper-SD) 🏎️
Now with added support:
- prompt input
- attention masking for improved prompt adherence
- multiple image interpolation
[[non-commercial license](https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co./black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image to create variations", type="pil")
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
reference_scale = gr.Slider(
info="lower to enhance prompt adherence",
label="Masking Scale",
minimum=0.01,
maximum=0.08,
step=0.001,
value=0.03,
)
run_button = gr.Button("Run")
with gr.Column():
image_2 = gr.Image(label="2nd image to create interpolated variations", type="pil")
prompt_2 = gr.Text(
label="2nd Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
prompt_embeds_scale_1 = gr.Slider(
label="prompt embeds scale 1st image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
prompt_embeds_scale_2 = gr.Slider(
label="prompt embeds scale 2nd image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
pooled_prompt_embeds_scale_1 = gr.Slider(
label="pooled prompt embeds scale 1nd image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
pooled_prompt_embeds_scale_2 = gr.Slider(
label="pooled prompt embeds scale 2nd image",
minimum=0,
maximum=1.5,
step=0.01,
value=1,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=30,
step=1,
value=8,
)
gr.Examples(
examples=examples,
inputs=[input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed],
outputs=[result, seed],
fn=infer,
)
gr.on(
triggers=[run_button.click],
fn = infer,
inputs = [input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch()
|