File size: 9,867 Bytes
f8bb00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tqdm.auto import tqdm\n",
"import pandas as pd\n",
"import time\n",
"\n",
"from langchain.document_loaders import PyMuPDFLoader\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"\n",
"pd.set_option(\"display.max_colwidth\", None)\n",
"\n",
"# Set ChatMistralAI API KEY\n",
"# e.g., export MISTRAL_API_KEY==your_api_key_here\n",
"# or save apy key in .env file\n",
"from dotenv import load_dotenv\n",
"load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load pdf file\n",
"filepath = \"data/documents/Brandt et al_2024_Kadi_info_page.pdf\"\n",
"loader_module = PyMuPDFLoader\n",
"loader = loader_module(filepath)\n",
"document = loader.load()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Split docs into chunks\n",
"text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=2000,\n",
" chunk_overlap=200,\n",
" add_start_index=True,\n",
" separators=[\"\\n\\n\", \"\\n\", \".\", \" \", \"\"],\n",
")\n",
"\n",
"docs_processed = []\n",
"for doc in document:\n",
" docs_processed += text_splitter.split_documents([doc])\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create LLM, here we use MistralAI\n",
"from langchain_mistralai.chat_models import ChatMistralAI\n",
"\n",
"llm = ChatMistralAI(\n",
" model=\"mistral-large-latest\"\n",
")\n",
"\n",
"llm.invoke(\"hello\") # test llm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"QA_generation_prompt = \"\"\"\n",
"Your task is to write a factoid question and an answer given a context.\n",
"Your factoid question should be answerable with a specific, concise piece of factual information from the context.\n",
"Your factoid question should be formulated in the same style as questions users could ask in a search engine. Users are usually scientific researchers in the field of materials science.\n",
"This means that your factoid question MUST NOT mention something like \"according to the passage\" or \"context\".\n",
"Please ask the specific question instead of the general question, like 'What is the key information in the given paragraph?'.\n",
"\n",
"Provide your answer as follows:\n",
"\n",
"Output:::\n",
"Factoid question: (your factoid question)\n",
"Answer: (your answer to the factoid question)\n",
"\n",
"Now here is the context.\n",
"\n",
"Context: {context}\\n\n",
"Output:::\"\"\"\n",
"\n",
"# Or\n",
"# Ref: https://mlflow.org/docs/latest/llms/rag/notebooks/question-generation-retrieval-evaluation.html\n",
"# QA_generation_prompt = \"\"\"\n",
"# Please generate a question asking for the key information in the given paragraph.\n",
"# Also answer the questions using the information in the given paragraph.\n",
"# Please ask the specific question instead of the general question, like\n",
"# 'What is the key information in the given paragraph?'.\n",
"# Please generate the answer using as much information as possible.\n",
"# If you are unable to answer it, please generate the answer as 'I don't know.'\n",
"\n",
"# Provide your answer as follows:\n",
"\n",
"# Output:::\n",
"# Factoid question: (your factoid question)\n",
"# Answer: (your answer to the factoid question)\n",
"\n",
"# Now here is the context.\n",
"\n",
"# Context: {context}\\n\n",
"# Output:::\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Generate QA pairs\n",
"\n",
"import random\n",
"\n",
"N_GENERATIONS = 5 # generate only 5 QA couples here for cost and time considerations\n",
"\n",
"print(f\"Generating {N_GENERATIONS} QA couples...\")\n",
"\n",
"outputs = []\n",
"for sampled_context in tqdm(random.choices(docs_processed, k=N_GENERATIONS)):\n",
" # Generate QA pairs\n",
" output_QA_couple = llm.invoke(QA_generation_prompt.format(context=sampled_context.page_content)).content\n",
" try:\n",
" question = output_QA_couple.split(\"Factoid question: \")[-1].split(\"Answer: \")[0]\n",
" answer = output_QA_couple.split(\"Answer: \")[-1]\n",
" assert len(answer) < 500, \"Answer is too long\"\n",
" outputs.append(\n",
" {\n",
" \"context\": sampled_context.page_content,\n",
" \"question\": question,\n",
" \"answer\": answer,\n",
" \"source_doc\": sampled_context.metadata[\"source\"],\n",
" }\n",
" )\n",
" time.sleep(3) # sleep for llm rate limitation\n",
" except:\n",
" time.sleep(3) # sleep for llm rate limitation\n",
" continue"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"reference_df = pd.DataFrame(outputs)\n",
"display(reference_df.head(1))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# build a simple rag chain\n",
"from langchain_huggingface import HuggingFaceEmbeddings\n",
"from langchain.vectorstores import FAISS\n",
"\n",
"chunk_size=1024\n",
"chunk_overlap=256\n",
"splitter = RecursiveCharacterTextSplitter(\n",
" separators=[\"\\n\\n\", \"\\n\"], chunk_size=chunk_size, chunk_overlap=chunk_overlap\n",
")\n",
"doc_chunks = splitter.split_documents(document)\n",
"\n",
"embeddings = HuggingFaceEmbeddings(model_name=\"all-mpnet-base-v2\")\n",
"\n",
"vectorstore = FAISS.from_documents(doc_chunks, embedding=embeddings)\n",
"\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"from langchain.chains import RetrievalQA\n",
"\n",
"rag_chain = RetrievalQA.from_llm(\n",
" llm=llm, retriever=retriever, return_source_documents=True\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Prepare evaluation data set\n",
"def prepare_eval_dataset(reference_df, rag_chain):\n",
" \n",
" print(\"now loading evaluation dataset...\")\n",
" from datasets import Dataset\n",
" # Read reference file\n",
" df = reference_df\n",
"\n",
" # Add anwsers from rag_chain\n",
" questions = df[\"question\"].values\n",
" ground_truth = []\n",
" for a in df[\"answer\"].values:\n",
" ground_truth.append(a) # [a] for older version of ragas\n",
" answers = []\n",
" contexts = []\n",
"\n",
" # Get anwswers from rag_chain\n",
" print(\"now getting anwsers from QA llm...\")\n",
" for query in questions:\n",
" results = rag_chain({\"query\": query})\n",
" answers.append(results[\"result\"])\n",
" contexts.append([docs.page_content for docs in results[\"source_documents\"]])\n",
" time.sleep(3) # sleep for llm rate limitation\n",
"\n",
" # To dict\n",
" data = {\n",
" \"question\": questions,\n",
" \"answer\": answers,\n",
" \"contexts\": contexts,\n",
" \"ground_truth\": ground_truth,\n",
" }\n",
"\n",
" # Convert dict to dataset\n",
" dataset = Dataset.from_dict(data)\n",
" return dataset\n",
"\n",
"eval_dataset = prepare_eval_dataset(reference_df, rag_chain)\n",
"eval_dataset\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Ragas evaluation\n",
"from ragas.llms import LangchainLLMWrapper\n",
"eval_llm = LangchainLLMWrapper(llm)\n",
"\n",
"from ragas import evaluate\n",
"from ragas.metrics import (\n",
" faithfulness,\n",
" answer_relevancy,\n",
" context_recall,\n",
" context_precision,\n",
" answer_correctness,\n",
")\n",
"result_eval_df = evaluate(\n",
" dataset=eval_dataset,\n",
" metrics=[\n",
" context_precision,\n",
" context_recall,\n",
" faithfulness,\n",
" answer_relevancy,\n",
" answer_correctness,\n",
" ],\n",
" llm=eval_llm, embeddings=embeddings,\n",
" raise_exceptions=False,\n",
")\n",
"\n",
"result_eval_df = result_eval_df.to_pandas() # can take a while"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check results\n",
"result_eval_df\n",
"# if you get NaN in results, check \"Frequently Asked Questions\" in Ragas for help"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|