File size: 27,050 Bytes
1a20a59 2fafc94 1a20a59 2fafc94 1a20a59 2fafc94 646f8c2 2fafc94 646f8c2 2fafc94 1a20a59 2fafc94 1a20a59 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 1a20a59 2fafc94 1a20a59 2fafc94 1a20a59 2fafc94 e607fab 2fafc94 a28539f e607fab 2fafc94 1a20a59 646f8c2 2fafc94 e607fab 1a20a59 e607fab 1a20a59 2fafc94 1a20a59 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 646f8c2 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 2fafc94 1a20a59 2fafc94 e607fab 2fafc94 e607fab 2fafc94 1a20a59 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 1a20a59 2fafc94 1a20a59 2fafc94 e607fab 2fafc94 e607fab 2fafc94 e607fab 1a20a59 17f86f9 7378979 17f86f9 5ed5a48 1a20a59 5c03885 4e765a8 1a20a59 5c03885 5ed5a48 e607fab 2fafc94 17f86f9 2fafc94 5c03885 832106a 2fafc94 5c03885 2fafc94 e607fab 2fafc94 e607fab 2fafc94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
"""
Main app for LISA RAG chatbot based on langchain.
"""
import os
import time
import re
import gradio as gr
import pickle
from pathlib import Path
from dotenv import load_dotenv
from huggingface_hub import login
from langchain.vectorstores import FAISS
from llms import get_groq_chat
from documents import load_pdf_as_docs, load_xml_as_docs
from vectorestores import get_faiss_vectorestore
# For debug
# from langchain.globals import set_debug
# set_debug(True)
# Load and set env variables
load_dotenv()
# Set API keys
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
login(HUGGINGFACEHUB_API_TOKEN)
TAVILY_API_KEY = os.environ["TAVILY_API_KEY"] # Search engine
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Set database path
database_root = "./data/db"
document_path = "./data/documents"
# Load cached db
def load_from_pickle(filename):
with open(filename, "rb") as file:
return pickle.load(file)
# Load docs
docs = load_from_pickle(os.path.join(database_root, "docs.pkl"))
# Load doc chunks
document_chunks = load_from_pickle(os.path.join(database_root, "docs_chunks.pkl"))
# Set embedding
from embeddings import get_jinaai_embeddings
embeddings = get_jinaai_embeddings(device="auto")
print("embedding loaded")
# Load vectorstore
vectorstore = FAISS.load_local(
os.path.join(database_root, "faiss_index"),
embeddings,
allow_dangerous_deserialization=True,
)
print("vectorestore loaded")
# Load or create retrievers
from retrievers import get_parent_doc_retriever, get_rerank_retriever
docstore = load_from_pickle(os.path.join(database_root, "docstore.pkl"))
parent_doc_retriver = get_parent_doc_retriever(
docs,
vectorstore,
save_path_root=database_root,
docstore=docstore,
add_documents=False,
)
# Hybrid-search
from langchain.retrievers import BM25Retriever, EnsembleRetriever
bm25_retriever = BM25Retriever.from_documents(
document_chunks, k=5
) # k = 1/2 of dense retriever, experimental value
# Ensemble all above retrievers
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, parent_doc_retriver], weights=[0.5, 0.5]
)
# Reranker
from rerank import BgeRerank
reranker = BgeRerank()
rerank_retriever = get_rerank_retriever(ensemble_retriever, reranker)
print("rerank loaded")
# Create LLM model
llm = get_groq_chat(model_name="llama-3.3-70b-versatile")
# Create conversation qa chain (Note: conversation is not supported yet)
from ragchain import RAGChain
rag_chain = RAGChain()
lisa_qa_conversation = rag_chain.create(rerank_retriever, llm, add_citation=True)
# Web search rag chain
from langchain_community.retrievers import TavilySearchAPIRetriever
from langchain.chains import RetrievalQAWithSourcesChain
web_search_retriever = TavilySearchAPIRetriever(k=4) # , include_raw_content=True)
web_qa_chain = RetrievalQAWithSourcesChain.from_chain_type(
llm, retriever=web_search_retriever, return_source_documents=True
)
print("chains loaded")
# Gradio utils
def check_input_text(text):
"""Check input text (question)."""
if not text:
gr.Warning("Please input a question.")
raise TypeError # None input
return True
def add_text(history, text):
"""Add conversation to history message."""
history = history + [(text, None)]
yield history, ""
def postprocess_remove_cite_misinfo(text, allowed_max_cite_num=6):
"""Heuristic removal of misinfo. of citations."""
# Remove trailing references at end of text
if "References:\n[" in text:
text = text.split("References:\n")[0]
source_ids = re.findall(r"(\[.*?\]+)", text) # List[Char]
pattern = r"(,*? *?\[.*?\]+)" # to deal with sth. like "[[20], [21–30]]"
print(f"source ids by re: {source_ids}")
# Define the custom function for replacement
def replace_and_increment(match):
match_str = match.group(1)
# print("match str", match_str)
# Delete anything like [[10–14]]
if "–" in match_str or "-" in match_str:
return ""
# Delete anything like [i]
if "i" in match_str:
return ""
# Find number in match_str
# pattern = r'\[(\d+)\]'
pattern = r"(\d+)"
nums = re.findall(pattern, match_str)
if nums:
nums_list = []
for n in nums:
if int(n) <= allowed_max_cite_num: # maxmium num. of inputs for llm
nums_list.append("[[" + n + "]]")
# num = int(num[0])
else: # no number found
return ""
if re.search("^,", match_str):
return (
'<sup><span style="color:#F27F0C">'
+ ", "
+ ", ".join(nums_list)
+ "</span></sup>"
)
return (
'<sup><span style="color:#F27F0C">'
+ " "
+ ", ".join(nums_list)
+ "</span></sup>"
)
# Replace all matches with itself plus 1
new_text = re.sub(pattern, replace_and_increment, text)
# Remove trailing citations like \n\n [[1]] [[2]
if "\n\n [" in new_text:
new_text = new_text.split("\n\n [")[0]
if "\n\n[" in new_text:
new_text = new_text.split("\n\n[")[0]
# Remove unnecessary white space etc.
new_text = new_text.strip()
return new_text
def postprocess_citation(text, source_docs):
"""Postprocess text for extracting citations."""
# return "test putout for debug {}".format(xxx)
source_ids = re.findall(r"\[(\d*)\]", text) # List[Char]
# print(f"source ids by re: {source_ids}")
# source_ids = re.findall(r"\[\[(.*?)\]\]", text) # List[Char]
aligned_source_ids = list(map(lambda x: int(x) - 1, source_ids)) # shift index-1
# print(f"source ids generated by llm: {aligned_source_ids}")
# Filter fake source ids as LLM might generate false source ids
candidate_source_ids = list(range(len(source_docs)))
filtered_source_ids = set(
[i for i in aligned_source_ids if i in candidate_source_ids]
)
filtered_docs = [source_docs[i] for i in filtered_source_ids]
output_markdown = "" # """**References**\n\n"""
for i, d in zip(filtered_source_ids, filtered_docs):
# * [[0]]: source: paper1
# > some text
index = i + 1
source = d.metadata["source"]
content = d.page_content.strip().replace("\n", " ")
source_info = f"<b>[[{index}]] {source}</b>"
item = f"""
<details>
<summary>{source_info}</summary>
<blockquote cite="">
<p>{content}</p>
</blockquote>
</details>
"""
# item = f"""
# <details> <summary>{source_info}</summary>\n
# > {content}
# </details>\n
# """ # collapsible section (fold)
# item = f"**[[{index}]] source: {source}**\n> {content}\n\n" # shift index+1
output_markdown += item
# print("in add citaiton funciton output markdown", output_markdown)
# output_markdown = "this is just a test before real markdown pops out."
return output_markdown
def postprocess_web_citation(text, qa_result):
"""Postprocess text for extracting web citations."""
# TODO: Simple implementation, to be improved
if qa_result["sources"]: # source_documents
# '<https://www.extremetech.com/energy/what-is-a-solid-state-battery-how-they-work-explained>,'
web_sources = qa_result["sources"].split(",")
web_sources = [
s.strip().replace(">", "").replace("<", "").replace(",", "")
for s in web_sources
] # simple cleaning
else: # if no qa_results["sources"]
web_sources = [doc.metadata["source"] for doc in qa_result["source_documents"]]
output_markdown = "" # """**References**\n\n"""
for i, d in enumerate(web_sources):
index = i + 1
source = d
item = f"""
<p><a href="{source}/" target="_blank" rel="noopener noreferrer">[{index}]. {source}</a></p>
"""
output_markdown += item
return output_markdown
def bot_lisa(history, flag_web_search):
"""Get answer from LLM."""
if not flag_web_search: # use internal-database
result = lisa_qa_conversation(
{
"question": history[-1][0], # or "query" if RetrievalQA
"chat_history": history[:-1],
}
)
if result is None: # handle error case
raise gr.Error("Sorry, failed to get answer from LLM, please try again.")
# return "", "something wrong with anwswer, please try again"
print(f"Answer: {result['answer']}")
print(f"Source document: {result['source_documents']}") # for debug
# Citation post-processing
answer_text = result["answer"].strip()
# Remove misinfo in text
answer_text = postprocess_remove_cite_misinfo(answer_text)
# print("processed answer after misinfo remove", answer_text)
citation_text = postprocess_citation(answer_text, result["source_documents"])
# print("citation_text", citation_text)
else: # use web search
result = web_qa_chain(
{
"question": history[-1][0], # or "query" if RetrievalQA
# "chat_history": history[:-1],
}
)
if result is None: # handle error case
raise gr.Error("Sorry, failed to get answer from LLM, please try again.")
# return "", "something wrong with anwswer, please try again"
answer_text = result["answer"].strip()
citation_text = postprocess_web_citation(answer_text, result)
# no stream style
# history[-1][1] = answer_text
# return history, citation_text
# fake stream style
history[-1][1] = "" # Fake stream, TODO: implement streaming
for character in answer_text:
time.sleep(0.002)
history[-1][1] += character
yield history, citation_text
def bot(history, qa_conversation):
"""Get answer from LLM, so custom document."""
# print("id of qa conver", id(qa_conversation)) # for debug
if qa_conversation is None:
gr.Warning("Please upload a document first.")
result = qa_conversation(
{
"question": history[-1][0], # or "query" if RetrievalQA
"chat_history": history[:-1],
}
)
if result is None: # handle error case
return "", ""
print(f"Source document: {result['source_documents']}") # for debug
answer_text = result["answer"].strip()
# Remove misinfo in text
answer_text = postprocess_remove_cite_misinfo(answer_text)
citation_text = postprocess_citation(answer_text, result["source_documents"])
history[-1][1] = "" # Fake stream, TODO: implement streaming
for character in answer_text:
time.sleep(0.002)
history[-1][1] += character
yield history, citation_text
def document_changes(doc_path):
"""Parse user document."""
max_file_num = 3
# Ref: https://huggingface.co./spaces/fffiloni/langchain-chat-with-pdf
if doc_path is None:
gr.Warning("Please choose a document first and wait until uploaded.")
return (
"Please choose a document and wait until uploaded.",
None,
) # for langchain_status, qa_conversation
print("now reading document")
print(f"file is located at {doc_path[0]}")
documents = []
for doc in doc_path[:max_file_num]:
file_extension = Path(doc).suffix
if file_extension == ".pdf":
documents.extend(load_pdf_as_docs(doc))
elif file_extension == ".xml":
documents.extend(load_xml_as_docs(doc))
print("now creating vectordatabase")
vectorstore = get_faiss_vectorestore(embeddings)
parent_doc_retriever = get_parent_doc_retriever(documents, vectorstore)
rerank_retriever = get_rerank_retriever(parent_doc_retriever, reranker)
print("now getting llm model")
llm = get_groq_chat(model_name="llama-3.1-70b-versatile")
rag_chain = RAGChain()
# global qa_conversation
qa_conversation = rag_chain.create(rerank_retriever, llm, add_citation=True)
# doc_qa = qa_conversation # RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# qa_conversation = ConversationalRetrievalChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
file_name = Path(doc_path[0]).name # First file
return f"Ready for {file_name} etc.", qa_conversation # , db, retriever
# Main gradio UI
def main():
"""Gradio interface."""
with gr.Blocks() as demo:
######################################################################
# LISA chat tab
# Title info
gr.Markdown("## LISA - Lithium Ion Solid-state Assistant")
gr.Markdown(
"""
Q&A research assistant for efficient Knowledge Management not only in Battery Science.
Based on RAG-architecture and powered by Large Language Models (LLMs)."""
)
with gr.Tab("LISA ⚡"):
with gr.Row():
with gr.Column(scale=7):
# Chatbot
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
label="Document Assistant",
bubble_full_width=False,
show_copy_button=True,
# likeable=True,
) # .style(height=750)
user_txt = gr.Textbox(
label="Question", # show_label=False,
placeholder="Type in the question and press Enter/click Submit",
) # .style(container=False)
with gr.Accordion("Advanced", open=False):
flag_web_search = gr.Checkbox(
label="Search web", info="Search information from Internet"
)
with gr.Row():
# with gr.Column(scale=8):
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
# citations test place
# doc_citation = gr.Markdown("References used in answering the question will be displayed below.")
# Examples
gr.Examples(
examples=[
"Please name two common solid electrolytes.",
"Please name two common oxide solid electrolytes.",
"Please tell me what is solid-state battery.",
"How to synthesize gc-LPSC?",
"Please tell me the purpose of Kadi4Mat.",
"Who is working on Kadi4Mat?",
"Can you recommend a paper to get a deeper understanding of Kadi4Mat?",
# "How to synthesize gc-LPSC, e.g., glass-ceramic Li5.5PS4.5Cl1.5?",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
# cache_examples=True,
cache_examples=False,
examples_per_page=3,
)
# with gr.Accordion("References", open=True):
# Reference (citations) and other settings
with gr.Column(scale=3):
with gr.Tab("References"):
doc_citation = gr.HTML(
"<p>References used in answering the question will be displayed below.</p>"
) # gr.Markdown("References used in answering the question will be displayed below.")
# gr.Markdown("nothing test")
with gr.Tab("Setting"):
# checkbox for allowing web search
# flag_web_search = gr.Checkbox(label="Search web", info="Search information from Internet")
gr.Markdown("More in DEV...")
# Action functions
user_txt.submit(check_input_text, user_txt, None).success(
add_text, [chatbot, user_txt], [chatbot, user_txt]
).then(bot_lisa, [chatbot, flag_web_search], [chatbot, doc_citation])
submit_btn.click(check_input_text, user_txt, None).success(
add_text,
[chatbot, user_txt],
[chatbot, user_txt],
# concurrency_limit=8,
# queue=False,
).then(bot_lisa, [chatbot, flag_web_search], [chatbot, doc_citation])
clear_btn.click(lambda: None, None, chatbot, queue=False)
######################################################################
######################################################################
# Document-based QA
with gr.Tab("Upload document 📚"):
qa_conversation = gr.State(
"placeholder", time_to_live=3600
) # clean state after 1h, is , is time_to_live=3600 needed?
with gr.Row():
with gr.Column(scale=7, variant="chat_panel"):
chatbot_docqa = gr.Chatbot(
[],
elem_id="chatbot_docqa",
label="Document Assistant",
show_copy_button=True,
likeable=True,
)
docqa_question = gr.Textbox(
label="Question",
placeholder="Type in the question and press Enter/click Submit",
)
with gr.Row():
with gr.Column(scale=50):
docqa_submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=50):
docqa_clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Summarize the paper",
"Summarize the paper in 3 bullet points",
# "Explain Abstract of this paper in 2 lines",
"What are the contributions of this paper",
"Explain the practical implications of this paper",
"Methods used in this paper",
"What data has been used in this paper",
"Results of the paper",
"Conclusions from the paper",
"Limitations of this paper",
"Future works suggested in this paper",
],
inputs=docqa_question,
outputs=chatbot_docqa,
fn=add_text,
label="Example questions for single document.",
# cache_examples=True,
cache_examples=False,
examples_per_page=4,
)
# Load file, reference (citations) and other settings
with gr.Column(scale=3):
with gr.Tab("Load"):
# with gr.Column(scale=3, variant="load_file_panel"):
with gr.Row():
gr.HTML(
"Upload pdf/xml file(s), click the Load file button. After preprocessing, you can start asking questions about the document. (Please do not share sensitive document)"
)
with gr.Row():
uploaded_doc = gr.File(
label="Upload pdf/xml (max. 3) file(s)",
file_count="multiple",
file_types=[".pdf", ".xml"],
type="filepath",
height=100,
)
with gr.Row():
langchain_status = gr.Textbox(
label="Status", placeholder="", interactive=False
)
load_document = gr.Button("Load file")
with gr.Tab("References"):
doc_citation_user_doc = gr.HTML(
"References used in answering the question will be displayed below."
)
with gr.Tab("Setting"):
gr.Markdown("More in DEV...")
# Actions
load_document.click(
document_changes,
inputs=[uploaded_doc], # , repo_id],
outputs=[
langchain_status,
qa_conversation,
], # , docqa_db, docqa_retriever],
queue=False,
)
docqa_question.submit(check_input_text, docqa_question).success(
add_text,
[chatbot_docqa, docqa_question],
[chatbot_docqa, docqa_question],
).then(
bot,
[chatbot_docqa, qa_conversation],
[chatbot_docqa, doc_citation_user_doc],
)
docqa_submit_btn.click(check_input_text, docqa_question).success(
add_text,
[chatbot_docqa, docqa_question],
[chatbot_docqa, docqa_question],
).then(
bot,
[chatbot_docqa, qa_conversation],
[chatbot_docqa, doc_citation_user_doc],
)
##########################
# Preview tabs
with gr.Tab("Preview feature 🔬"):
# VLM model
with gr.Tab("Vision LM 🖼"):
vision_tmp_link = (
"https://kadi-iam-lisa-vlm.hf.space/" # vision model link
)
with gr.Blocks(css="""footer {visibility: hidden};""") as preview_tab:
gr.HTML(
"""<iframe src="{}" style="width:100%; height:1024px; overflow:auto"></iframe>""".format(
vision_tmp_link
)
)
# gr.Markdown("placeholder")
# OAuth2 linkage to Kadi-demo
with gr.Tab("KadiChat 💬"):
kadichat_tmp_link = (
"https://kadi-iam-kadichat.hf.space/" # vision model link
)
with gr.Blocks(css="""footer {visibility: hidden};""") as preview_tab:
gr.HTML(
"""<iframe src="{}" style="width:100%; height:1024px; overflow:auto"></iframe>""".format(
kadichat_tmp_link
)
)
# Knowledge graph-enhanced RAG
with gr.Tab("RAG enhanced with Knowledge Graph (dev) 🔎"):
kg_tmp_link = "https://kadi-iam-kadikgraph.static.hf.space/index.html"
gr.Markdown(
"[If rendering fails, look at the graph here](https://kadi-iam-kadikgraph.static.hf.space)"
)
with gr.Blocks(css="""footer {visibility: hidden};""") as preview_tab:
gr.HTML(
"""<iframe
src="{}"
frameborder="0"
width="850"
height="450"
></iframe>
""".format(
kg_tmp_link
)
)
# About information
with gr.Tab("About 📝"):
with gr.Tab("Dev. info"):
gr.Markdown(
"""
This system is being developed by the [Kadi Team at IAM-MMS, KIT](https://kadi.iam.kit.edu/kadi-ai), in collaboration with various groups with different scientific backgrounds.
Changelog:
- 23-10-2024: Add Kadi knowledge graph as test for Knowledge Graph-RAG.
- 18-10-2024: Add linkage to Kadi.
- 02-10-2024: Code cleaning, release code soon
- 26-09-2024: Switch Vision-LLM to Mistral via API
- 31-08-2024: Make document parsing as a preprocessing step and cache vector-database
- 31-05-2024: Add Vision-LLM and draft Knowledge Graph-RAG (*preview*)
- 21-05-2024: Add web search in setting (*experimental*)
- 15-03-2024: Add evaluation and improve citation feature
- 20-02-2024: Add citation feature (*experimental*)
- 16-02-2024: Add support for xml file
- 12-02-2024: Set demo on huggingface
- 16-01-2024: Build first demo version
- 23-11-2023: Draft concept
Dev:
- Metadata parsing
- More robust citation feature
- Conversational chat
Current limitations:
- The conversational chat (chat with history context) is not supported yet
- Only 3 files are allowed to upload for testing
*Notes: The model may produce incorrect statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate facts.
"""
)
with gr.Tab("What's included?"):
from paper_list import paper_list_str
gr.Markdown(
f"Currently, LISA includes the following open/free access pulications/documents/websites:\n\n {paper_list_str}"
)
# pdf_loader.change(pdf_changes, inputs=[pdf_loader, repo_id], outputs=[langchain_status], queue=False)
######################################################################
demo.queue(max_size=8, default_concurrency_limit=4).launch(share=True)
if __name__ == "__main__":
main()
|