Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,23 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
-
import mediapipe as mp
|
4 |
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
pose = mp_pose.Pose()
|
9 |
|
10 |
-
#
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
results = pose.process(image_rgb)
|
17 |
-
|
18 |
-
if results.pose_landmarks:
|
19 |
-
return "Person Detected: Standing or Sitting Pose Identified"
|
20 |
-
else:
|
21 |
-
return "No person detected, please try again"
|
22 |
-
|
23 |
-
# Gradio Interface
|
24 |
interface = gr.Interface(
|
25 |
-
fn=
|
26 |
-
inputs=gr.Image(type="pil"), # Accepts
|
27 |
-
outputs="
|
28 |
-
title="
|
29 |
-
description="Upload an image
|
30 |
)
|
31 |
|
32 |
-
# Launch the
|
33 |
if __name__ == "__main__":
|
34 |
interface.launch(server_name="0.0.0.0")
|
|
|
1 |
+
from transformers import pipeline
|
|
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
+
# Load a pre-trained image classification model
|
5 |
+
model = pipeline("image-classification", model="google/vit-base-patch16-224")
|
|
|
6 |
|
7 |
+
# Define a function for detecting actions
|
8 |
+
def classify_image(image):
|
9 |
+
predictions = model(image)
|
10 |
+
return {pred["label"]: round(pred["score"], 4) for pred in predictions}
|
11 |
|
12 |
+
# Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
interface = gr.Interface(
|
14 |
+
fn=classify_image,
|
15 |
+
inputs=gr.Image(type="pil"), # Accepts image input
|
16 |
+
outputs="json", # Outputs predictions
|
17 |
+
title="Action Classifier",
|
18 |
+
description="Upload an image, and the model will classify actions (e.g., standing, sitting)."
|
19 |
)
|
20 |
|
21 |
+
# Launch the app
|
22 |
if __name__ == "__main__":
|
23 |
interface.launch(server_name="0.0.0.0")
|