Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,101 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
from textblob import TextBlob
|
4 |
import joblib
|
5 |
import matplotlib.pyplot as plt
|
6 |
import datetime
|
7 |
|
8 |
-
#
|
9 |
@st.cache_data
|
10 |
-
def
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
tweets_data['Date'] = pd.to_datetime(tweets_data['Date']).dt.date
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
analysis = TextBlob(tweet)
|
21 |
-
return analysis.sentiment.polarity
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date'])
|
30 |
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
merged_data['Prev_Sentiment'] = merged_data.groupby('Stock Name')['Sentiment'].shift(1)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
merged_data['MA14'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=14).mean())
|
47 |
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
# Load the best model
|
63 |
model_filename = 'model/best_model.pkl'
|
64 |
model = joblib.load(model_filename)
|
65 |
|
|
|
66 |
st.title("Stock Price Prediction Using Sentiment Analysis")
|
67 |
|
68 |
# User input for stock data
|
69 |
st.header("Input Stock Data")
|
|
|
70 |
selected_stock = st.selectbox("Select Stock Name", stock_names)
|
71 |
-
days_to_predict = st.number_input("Number of Days to Predict",
|
72 |
-
min_value=1, max_value=30, value=10)
|
73 |
|
74 |
# Get the latest data for the selected stock
|
75 |
-
latest_data =
|
76 |
prev_close = latest_data['Close']
|
77 |
prev_sentiment = latest_data['Sentiment']
|
78 |
ma7 = latest_data['MA7']
|
@@ -113,8 +136,6 @@ if st.button("Predict"):
|
|
113 |
ma14 = (ma14 * 13 + next_day_prediction) / 14 # Simplified rolling calculation
|
114 |
daily_change = next_day_prediction - prev_close
|
115 |
|
116 |
-
# st.write(f"Predicted next {days_to_predict} days close prices: {predictions}")
|
117 |
-
# Prepare prediction data for display
|
118 |
# Prepare prediction data for display
|
119 |
prediction_dates = pd.date_range(start=latest_date + pd.Timedelta(days=1), periods=days_to_predict)
|
120 |
prediction_df = pd.DataFrame({
|
@@ -123,14 +144,51 @@ if st.button("Predict"):
|
|
123 |
})
|
124 |
|
125 |
st.subheader("Predicted Prices")
|
126 |
-
st.write(prediction_df)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import yfinance as yf
|
4 |
from textblob import TextBlob
|
5 |
import joblib
|
6 |
import matplotlib.pyplot as plt
|
7 |
import datetime
|
8 |
|
9 |
+
# Function to load stock data using yfinance
|
10 |
@st.cache_data
|
11 |
+
def load_yfinance_data():
|
12 |
+
# List of stock tickers
|
13 |
+
tickers = ['TSLA', 'MSFT', 'PG', 'META', 'AMZN', 'GOOG', 'AMD', 'AAPL', 'NFLX', 'TSM',
|
14 |
+
'KO', 'F', 'COST', 'DIS', 'VZ', 'CRM', 'INTC', 'BA', 'BX', 'NOC', 'PYPL', 'ENPH', 'NIO', 'ZS', 'XPEV']
|
15 |
+
|
16 |
+
# Set the start and end dates for the past 1 year
|
17 |
+
start_date = (datetime.datetime.now() - datetime.timedelta(days=365)).strftime('%Y-%m-%d')
|
18 |
+
end_date = datetime.datetime.today().strftime('%Y-%m-%d')
|
19 |
+
|
20 |
+
# Download the stock data using yfinance
|
21 |
+
data = yf.download(tickers, start=start_date, end=end_date, group_by='ticker')
|
22 |
+
|
23 |
+
# Process and format the data for each ticker
|
24 |
+
all_data = []
|
25 |
+
for ticker in tickers:
|
26 |
+
df = data[ticker].copy()
|
27 |
+
df.reset_index(inplace=True)
|
28 |
+
df['Stock Name'] = ticker
|
29 |
+
all_data.append(df)
|
30 |
+
|
31 |
+
# Concatenate all the data into a single DataFrame
|
32 |
+
all_stock_data = pd.concat(all_data, ignore_index=True)
|
33 |
+
|
34 |
+
return all_stock_data
|
35 |
|
36 |
+
# Load the data
|
37 |
+
data = load_yfinance_data()
|
|
|
38 |
|
39 |
+
# Perform sentiment analysis on tweets (assuming you still have your tweets data)
|
40 |
+
tweets_data = pd.read_csv('data/stock_tweets.csv')
|
|
|
|
|
41 |
|
42 |
+
# Convert the Date columns to datetime
|
43 |
+
tweets_data['Date'] = pd.to_datetime(tweets_data['Date']).dt.date
|
44 |
|
45 |
+
# Perform sentiment analysis on tweets
|
46 |
+
def get_sentiment(tweet):
|
47 |
+
analysis = TextBlob(tweet)
|
48 |
+
return analysis.sentiment.polarity
|
49 |
|
50 |
+
tweets_data['Sentiment'] = tweets_data['Tweet'].apply(get_sentiment)
|
|
|
51 |
|
52 |
+
# Aggregate sentiment by date and stock
|
53 |
+
daily_sentiment = tweets_data.groupby(['Date', 'Stock Name']).mean(numeric_only=True).reset_index()
|
54 |
|
55 |
+
# Convert the Date column in daily_sentiment to datetime64[ns]
|
56 |
+
daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date'])
|
57 |
|
58 |
+
# Merge stock data with sentiment data
|
59 |
+
merged_data = pd.merge(data, daily_sentiment, how='left', on=['Date', 'Stock Name'])
|
60 |
|
61 |
+
# Fill missing sentiment values with 0 (neutral sentiment)
|
62 |
+
merged_data['Sentiment'].fillna(0, inplace=True)
|
|
|
63 |
|
64 |
+
# Sort the data by date
|
65 |
+
merged_data.sort_values(by='Date', inplace=True)
|
|
|
66 |
|
67 |
+
# Create lagged features
|
68 |
+
merged_data['Prev_Close'] = merged_data.groupby('Stock Name')['Close'].shift(1)
|
69 |
+
merged_data['Prev_Sentiment'] = merged_data.groupby('Stock Name')['Sentiment'].shift(1)
|
70 |
|
71 |
+
# Create moving averages
|
72 |
+
merged_data['MA7'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).mean())
|
73 |
+
merged_data['MA14'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=14).mean())
|
74 |
|
75 |
+
# Create daily price changes
|
76 |
+
merged_data['Daily_Change'] = merged_data['Close'] - merged_data['Prev_Close']
|
77 |
|
78 |
+
# Create volatility
|
79 |
+
merged_data['Volatility'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).std())
|
80 |
|
81 |
+
# Drop rows with missing values
|
82 |
+
merged_data.dropna(inplace=True)
|
83 |
|
84 |
# Load the best model
|
85 |
model_filename = 'model/best_model.pkl'
|
86 |
model = joblib.load(model_filename)
|
87 |
|
88 |
+
# Streamlit application layout
|
89 |
st.title("Stock Price Prediction Using Sentiment Analysis")
|
90 |
|
91 |
# User input for stock data
|
92 |
st.header("Input Stock Data")
|
93 |
+
stock_names = merged_data['Stock Name'].unique()
|
94 |
selected_stock = st.selectbox("Select Stock Name", stock_names)
|
95 |
+
days_to_predict = st.number_input("Number of Days to Predict", min_value=1, max_value=30, value=10)
|
|
|
96 |
|
97 |
# Get the latest data for the selected stock
|
98 |
+
latest_data = merged_data[merged_data['Stock Name'] == selected_stock].iloc[-1]
|
99 |
prev_close = latest_data['Close']
|
100 |
prev_sentiment = latest_data['Sentiment']
|
101 |
ma7 = latest_data['MA7']
|
|
|
136 |
ma14 = (ma14 * 13 + next_day_prediction) / 14 # Simplified rolling calculation
|
137 |
daily_change = next_day_prediction - prev_close
|
138 |
|
|
|
|
|
139 |
# Prepare prediction data for display
|
140 |
prediction_dates = pd.date_range(start=latest_date + pd.Timedelta(days=1), periods=days_to_predict)
|
141 |
prediction_df = pd.DataFrame({
|
|
|
144 |
})
|
145 |
|
146 |
st.subheader("Predicted Prices")
|
147 |
+
# st.write(prediction_df)
|
148 |
+
st.dataframe(prediction_df)
|
149 |
+
# Plot predictions using Plotly
|
150 |
+
import plotly.express as px
|
151 |
+
fig = px.line(prediction_df, x='Date', y='Predicted Close Price',
|
152 |
+
markers=True, title=f"{selected_stock} Predicted Close Prices")
|
153 |
+
st.plotly_chart(fig, use_container_width=True)
|
154 |
+
|
155 |
+
# ----------------------------------------
|
156 |
+
# Enhanced Visualizations
|
157 |
+
st.header(" Enhanced Stock Analysis")
|
158 |
+
stock_history = data[data['Stock Name'] == selected_stock]
|
159 |
+
|
160 |
+
# Date filter slider
|
161 |
+
min_date = stock_history['Date'].min()
|
162 |
+
max_date = stock_history['Date'].max()
|
163 |
+
date_range = st.slider("Select Date Range for Visualizations",
|
164 |
+
min_value=min_date, max_value=max_date,
|
165 |
+
value=(min_date, max_date))
|
166 |
+
filtered_data = stock_history[(stock_history['Date'] >= date_range[0]) & (stock_history['Date'] <= date_range[1])]
|
167 |
+
|
168 |
+
with st.expander(" Price vs Sentiment Trend"):
|
169 |
+
fig1 = px.line(filtered_data, x='Date', y=['Close', 'Sentiment'],
|
170 |
+
labels={'value': 'Price / Sentiment', 'variable': 'Metric'},
|
171 |
+
title=f"{selected_stock} - Close Price & Sentiment")
|
172 |
+
st.plotly_chart(fig1, use_container_width=True)
|
173 |
+
|
174 |
+
with st.expander(" Volatility Over Time"):
|
175 |
+
fig2 = px.line(filtered_data, x='Date', y='Volatility',
|
176 |
+
title=f"{selected_stock} - 7-Day Rolling Volatility")
|
177 |
+
st.plotly_chart(fig2, use_container_width=True)
|
178 |
+
|
179 |
+
with st.expander(" Moving Averages (MA7 vs MA14)"):
|
180 |
+
fig3 = px.line(filtered_data, x='Date',
|
181 |
+
y=['MA7', 'MA14'],
|
182 |
+
labels={'value': 'Price', 'variable': 'Moving Average'},
|
183 |
+
title=f"{selected_stock} - Moving Averages")
|
184 |
+
st.plotly_chart(fig3, use_container_width=True)
|
185 |
+
|
186 |
+
with st.expander(" Daily Price Change"):
|
187 |
+
fig4 = px.line(filtered_data, x='Date', y='Daily_Change',
|
188 |
+
title=f"{selected_stock} - Daily Price Change")
|
189 |
+
st.plotly_chart(fig4, use_container_width=True)
|
190 |
+
|
191 |
+
with st.expander(" Sentiment Distribution"):
|
192 |
+
fig5 = px.histogram(filtered_data, x='Sentiment', nbins=30,
|
193 |
+
title=f"{selected_stock} - Sentiment Score Distribution")
|
194 |
+
st.plotly_chart(fig5, use_container_width=True)
|