import torch import requests from .config import TAG_NAMES # Local model setup (only load if needed) local_model = None local_tokenizer = None def predict_single(text, hf_repo, backend="local", hf_token=None): if backend == "local": return _predict_local(text, hf_repo) elif backend == "hf": return _predict_hf_api(text, hf_token) else: raise ValueError(f"Unknown backend: {backend}") def _predict_local(text, hf_repo): global local_model, local_tokenizer # Lazy-loading to avoid slow startup if local_model is None: from .model import QwenClassifier from transformers import AutoTokenizer local_model = QwenClassifier.from_pretrained(hf_repo).eval() local_tokenizer = AutoTokenizer.from_pretrained(hf_repo) inputs = local_tokenizer(text, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): logits = local_model(**inputs) return _process_output(logits) def _predict_hf_api(text, hf_token=None): # Use your Space endpoint instead of direct model API SPACE_URL = "https://KeivanR/qwen-classifier-demo" try: response = requests.post( f"{SPACE_URL}/predict", json={"text": text}, headers={"Authorization": f"Bearer {hf_token}"} if hf_token else {} ) return response.json() except Exception as e: raise ValueError(f"Space API Error: {str(e)}") def _process_output(logits): probs = torch.sigmoid(logits) s = '' for tag, prob in zip(TAG_NAMES, probs[0]): if prob>0.5: s += f"{tag}({prob:.2f}), " return s[:-2]