Spaces:
Sleeping
Sleeping
import torch | |
import requests | |
from .config import TAG_NAMES, SPACE_URL | |
from .globals import global_model, global_tokenizer | |
def predict_single(text, hf_repo, backend="local", hf_token=None): | |
if backend == "local": | |
return _predict_local(text, hf_repo) | |
elif backend == "hf": | |
return _predict_hf_api(text, hf_token) | |
else: | |
raise ValueError(f"Unknown backend: {backend}") | |
def _predict_local(text, hf_repo): | |
global global_model, global_tokenizer | |
# Lazy-loading to avoid slow startup | |
if global_model is None: | |
from .model import QwenClassifier | |
from transformers import AutoTokenizer | |
global_model = QwenClassifier.from_pretrained(hf_repo).eval() | |
global_tokenizer = AutoTokenizer.from_pretrained(hf_repo) | |
inputs = global_tokenizer(text, return_tensors="pt", truncation=True, max_length=512) | |
with torch.no_grad(): | |
logits = global_model(**inputs) | |
return _process_output(logits) | |
def _predict_hf_api(text, hf_token=None): | |
try: | |
response = requests.post( | |
f"{SPACE_URL}/predict", | |
json={"text": text}, # This matches the Pydantic model | |
headers={ | |
"Authorization": f"Bearer {hf_token}", | |
"Content-Type": "application/json" | |
} if hf_token else {"Content-Type": "application/json"}, | |
timeout=60 | |
) | |
response.raise_for_status() # Raise HTTP errors | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
raise ValueError(f"API Error: {str(e)}\nResponse: {e.response.text if hasattr(e, 'response') else ''}") | |
def _process_output(logits): | |
probs = torch.sigmoid(logits) | |
s = '' | |
for tag, prob in zip(TAG_NAMES, probs[0]): | |
if prob>0.5: | |
s += f"{tag}({prob:.2f}), " | |
return s[:-2] | |