KeivanR's picture
read timeout evaluate 3min
5a63674
import os
import numpy as np
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.preprocessing import MultiLabelBinarizer
import zipfile
import json
import pandas as pd
import torch
from datasets import Dataset
from torch.utils.data import DataLoader
import requests
from pathlib import Path
from .config import TAG_NAMES, DEVICE, SPACE_URL, EVAL_LIMIT
from .globals import global_model, global_tokenizer
print(np.__version__)
def _load_data(test_data_path):
eval_limit = os.getenv("EVAL_LIM")
if not eval_limit:
eval_limit = EVAL_LIMIT
test_data_path = Path(__file__).parent / test_data_path
# Check file existence
if not os.path.exists(test_data_path):
raise FileNotFoundError(
f"ZIP file not found at {test_data_path}. "
f"Current directory: {os.listdir(Path(__file__).parent)}"
)
if not zipfile.is_zipfile(test_data_path):
raise zipfile.BadZipFile(f"File is not a valid zip archive: {test_data_path}")
data = []
features = ["prob_desc_description", "prob_desc_input_spec", "prob_desc_output_spec"]
cols = features + ["tags"]
try:
with zipfile.ZipFile(test_data_path, 'r') as zip_file:
# Verify zip contents
names = zip_file.namelist()
if not names:
raise ValueError("Empty zip archive - no files found")
# Process files with limit
for name in names[1:1+int(eval_limit)]:
try:
with zip_file.open(name) as f:
content = f.read()
d = json.loads(content)
# 4. Validate required fields
if not all(col in d for col in cols):
missing = [col for col in cols if col not in d]
raise KeyError(f"Missing required fields in {name}: {missing}")
row = [d[c] for c in cols]
data.append(row)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON in file {name}: {str(e)}")
except Exception as e:
raise RuntimeError(f"Error processing {name}: {str(e)}")
except zipfile.BadZipFile as e:
raise zipfile.BadZipFile(f"Corrupted zip file: {str(e)}")
except Exception as e:
raise RuntimeError(f"Unexpected error loading data: {str(e)}")
if not data:
raise ValueError("No valid data files found in zip archive")
return pd.DataFrame(data, columns=cols)
def _preprocessing(df):
mlb = MultiLabelBinarizer(classes = TAG_NAMES)
tags_to_encode = ['math', 'graphs', 'strings', 'number theory', 'trees', 'geometry', 'games', 'probabilities']
# Filter tags and one-hot encode
df['tags_filtered'] = [[tag for tag in tags if tag in tags_to_encode] for tags in df["tags"]]
df.loc[df['tags_filtered'].apply(len) == 0, 'tags_filtered'] = df.loc[df['tags_filtered'].apply(len) == 0, 'tags_filtered'].apply(lambda x: ['other'])
encoded_tags = mlb.fit_transform(df['tags_filtered'])
# Create a new DataFrame with one-hot encoded columns
encoded_df = pd.DataFrame(encoded_tags, columns=mlb.classes_)
# Concatenate the encoded tags with the original DataFrame
df = pd.concat([df, encoded_df], axis=1)
texts = df["prob_desc_description"].values.tolist()
labels = df[TAG_NAMES].values.tolist()
# data:
# texts = ["text1", "text2", ...] # list of texts
# labels = [[0,1,0,0,1,0,1,1,0], [0,1,1,0,0,0,0,0,0],, ...] # list of labels
df = pd.DataFrame({'text':texts, 'labels': labels})
return df
def evaluate_batch(file_path, hf_repo, backend="local", hf_token=None):
if backend == "local":
return _evaluate_local(file_path, hf_repo)
elif backend == "hf":
return _evaluate_hf_api(file_path, hf_token)
else:
raise ValueError(f"Unknown backend: {backend}")
def _evaluate_local(test_data_path, hf_repo):
global global_model, global_tokenizer
# Lazy-loading to avoid slow startup
if global_model is None:
from .model import QwenClassifier
from transformers import AutoTokenizer
global_model = QwenClassifier.from_pretrained(hf_repo).eval()
global_tokenizer = AutoTokenizer.from_pretrained(hf_repo)
df = _load_data(test_data_path)
df = _preprocessing(df)
hf_dataset = Dataset.from_pandas(df)
# Then apply tokenization
def tokenize_function(examples):
return global_tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
dataset = hf_dataset.map(tokenize_function, batched=True)
dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
global_model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for batch in dataloader:
print(f"EVALUATION RUNNING ON {global_model.device}")
global_model = global_model.to(DEVICE)
batch = {k: v.to(DEVICE) for k, v in batch.items()}
labels = batch["labels"].type(torch.float32)
logits = global_model(batch["input_ids"], batch["attention_mask"])
preds = torch.sigmoid(logits).cpu().numpy() > 0.5
labels = labels.cpu().numpy()
all_preds.extend(preds)
all_labels.extend(labels)
val_acc = accuracy_score(all_labels, all_preds)
val_prec = precision_score(all_labels, all_preds, average='macro', zero_division=0)
val_rec = recall_score(all_labels, all_preds, average='macro')
val_f1 = f1_score(all_labels, all_preds, average='macro')
val_prec_per_class = precision_score(all_labels, all_preds, average=None, zero_division=0)
val_rec_per_class = recall_score(all_labels, all_preds, average=None)
val_f1_per_class = f1_score(all_labels, all_preds, average=None)
metrics = {
'Accuracy':int(100*val_acc),
'Precision':int(100*val_prec),
'Recall':int(100*val_rec),
'F1':int(100*val_f1),
'Precision_per_class':(100*val_prec_per_class).astype(int),
'Recall_per_class':(100*val_rec_per_class).astype(int),
'F1_per_class':(100*val_f1_per_class).astype(int),
}
# report = classification_report(all_labels, all_preds, target_names=TAG_NAMES, zero_division=0)
return metrics
def _evaluate_hf_api(file_path, hf_token=None):
try:
response = requests.post(
f"{SPACE_URL}/evaluate",
json={"file_path": file_path}, # This matches the Pydantic model
headers={
"Authorization": f"Bearer {hf_token}",
"Content-Type": "application/json"
} if hf_token else {"Content-Type": "application/json"},
timeout=180
)
response.raise_for_status() # Raise HTTP errors
return response.json()
except requests.exceptions.RequestException as e:
raise ValueError(f"API Error: {str(e)}\nResponse: {e.response.text if hasattr(e, 'response') else ''}")