KeivanR's picture
other files
6a1e686
raw
history blame
1.68 kB
import torch
import requests
from .config import TAG_NAMES
# Local model setup (only load if needed)
local_model = None
local_tokenizer = None
def predict_single(text, hf_repo, backend="local", hf_token=None):
if backend == "local":
return _predict_local(text, hf_repo)
elif backend == "hf":
return _predict_hf_api(text, hf_token)
else:
raise ValueError(f"Unknown backend: {backend}")
def _predict_local(text, hf_repo):
global local_model, local_tokenizer
# Lazy-loading to avoid slow startup
if local_model is None:
from .model import QwenClassifier
from transformers import AutoTokenizer
local_model = QwenClassifier.from_pretrained(hf_repo).eval()
local_tokenizer = AutoTokenizer.from_pretrained(hf_repo)
inputs = local_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
logits = local_model(**inputs)
return _process_output(logits)
def _predict_hf_api(text, hf_token=None):
# Use your Space endpoint instead of direct model API
SPACE_URL = "https://KeivanR/qwen-classifier-demo"
try:
response = requests.post(
f"{SPACE_URL}/predict",
json={"text": text},
headers={"Authorization": f"Bearer {hf_token}"} if hf_token else {}
)
return response.json()
except Exception as e:
raise ValueError(f"Space API Error: {str(e)}")
def _process_output(logits):
probs = torch.sigmoid(logits)
s = ''
for tag, prob in zip(TAG_NAMES, probs[0]):
if prob>0.5:
s += f"{tag}({prob:.2f}), "
return s[:-2]