Spaces:
Build error
Build error
File size: 3,066 Bytes
2dee6a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "71299281",
"metadata": {},
"outputs": [],
"source": [
"from fastai.vision.all import *\n",
"import gradio as gr\n",
"import skimage"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7d256402",
"metadata": {},
"outputs": [],
"source": [
"# Function needed to set labels\n",
"def is_cat(filename):\n",
" return filename.name[0].isupper() "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a350f960",
"metadata": {},
"outputs": [],
"source": [
"learn = load_learner('cat_dog_model.pkl')\n",
"labels = learn.dls.vocab\n",
"\n",
"def predict(img):\n",
" img = PILImage.create(img)\n",
" pred, pred_idx, probs = learn.predict(img)\n",
" return {labels[i]: float(probs[i]) for i in range(len(labels))}"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8703a184",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<gradio.routes.App at 0x7f5b0f748d90>, 'http://127.0.0.1:7860/', None)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"title = \"Cat/Dog Classifier\"\n",
"description = \"Basic Cat/Dog classifier trained on the Oxford Pets dataset with fastai. Testing out Gradio on HF Spaces.\"\n",
"examples = ['siamese.jpg', 'boerboel.jpg', 'german_shepherd.jpg', 'sphynx.jpg']\n",
"enable_queue=True\n",
"\n",
"gr.Interface(\n",
" fn=predict, \n",
" inputs=gr.Image(shape=(512,512)),\n",
" outputs=gr.Label(num_top_classes=3),\n",
" title=title,\n",
" description=description,\n",
" examples=examples,\n",
").launch(enable_queue=enable_queue)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.6 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "ed0e91aaffcefde6eb9bcd4f55fe7652d77471dc031ce772257aa5eb4a54e8f2"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|