Spaces:
Runtime error
Runtime error
import os | |
import random | |
import numpy as np | |
from huggingface_hub import AsyncInferenceClient | |
from translatepy import Translator | |
from gradio_client import Client, handle_file | |
from PIL import Image | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
HF_TOKEN = os.getenv('HF_TOKEN') # Set the environment variable for HF_TOKEN | |
HF_TOKEN_UPSCALER = os.getenv('HF_TOKEN') # Set the environment variable for HF_TOKEN_UPSCALER | |
class Lorify: | |
def __init__(self, hf_token=None, hf_token_upscaler=None): | |
# Optionally load tokens from environment if not passed | |
self.hf_token = hf_token or HF_TOKEN | |
self.hf_token_upscaler = hf_token_upscaler or HF_TOKEN_UPSCALER | |
# Initialize clients | |
self.qwen_client = Client("K00B404/HugChatWrap", hf_token=self.hf_token) | |
self.client = AsyncInferenceClient() | |
# List of available LoRAs (replace with your LoRA repo names or paths) | |
self.loaded_loras = [] | |
self.loras = [ | |
"Shakker-Labs/FLUX.1-dev-LoRA-add-details", | |
"XLabs-AI/flux-RealismLora", | |
"enhanceaiteam/Flux-uncensored" | |
] | |
self.loaded_loras.extend(self.loras) | |
# Enable or disable LoRA | |
def enable_lora(self, lora_add, basemodel): | |
return basemodel if not lora_add else lora_add | |
# Generate image function | |
async def generate_image(self, prompt, model, lora_word, width, height, scales, steps, seed): | |
try: | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
seed = int(seed) | |
# Translate prompt | |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word | |
# Generate image | |
image = await self.client.text_to_image( | |
prompt=text, | |
height=height, | |
width=width, | |
guidance_scale=scales, | |
num_inference_steps=steps, | |
model=model | |
) | |
return image, seed | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
return None, None | |
# Upscale image function | |
def upscale_image(self, prompt, img_path, upscale_factor): | |
try: | |
# Initialize the upscale client | |
upscale_client = Client("finegrain/finegrain-image-enhancer", hf_token=self.hf_token_upscaler) | |
result = upscale_client.predict( | |
input_image=handle_file(img_path), | |
prompt=prompt, | |
negative_prompt="worst quality, low quality, normal quality", | |
upscale_factor=upscale_factor, | |
controlnet_scale=0.6, | |
controlnet_decay=1, | |
condition_scale=6, | |
denoise_strength=0.35, | |
num_inference_steps=18, | |
solver="DDIM", | |
api_name="/process" | |
) | |
return result[1] # Return upscale image path | |
except Exception as e: | |
print(f"Error scaling image: {e}") | |
return None | |
# Main method to generate and optionally upscale image | |
async def gen_image(self, prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): | |
model = self.enable_lora(lora_model, basemodel) if process_lora else basemodel | |
image, seed = await self.generate_image(prompt, model, "", width, height, scales, steps, seed) | |
if image is None: | |
print("Image generation failed.") | |
return [] | |
image_path = "temp_image.jpg" | |
image.save(image_path, format="JPEG") | |
upscale_image_path = None | |
if process_upscale: | |
upscale_image_path = self.upscale_image(prompt, image_path, upscale_factor) | |
if upscale_image_path and os.path.exists(upscale_image_path): | |
return [image_path, upscale_image_path] | |
return [image_path] |