Cobra / diffusers /tests /single_file /test_stable_diffusion_single_file.py
JunhaoZhuang's picture
init
23e7e6a verified
import gc
import tempfile
import unittest
import torch
from diffusers import EulerDiscreteScheduler, StableDiffusionPipeline
from diffusers.loaders.single_file_utils import _extract_repo_id_and_weights_name
from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
)
from .single_file_testing_utils import (
SDSingleFileTesterMixin,
download_original_config,
download_single_file_checkpoint,
)
enable_full_determinism()
@slow
@require_torch_gpu
class StableDiffusionPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
pipeline_class = StableDiffusionPipeline
ckpt_path = (
"https://huggingface.co./stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors"
)
original_config = (
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
)
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
inputs = {
"prompt": "a fantasy landscape, concept art, high resolution",
"generator": generator,
"num_inference_steps": 2,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_single_file_format_inference_is_same_as_pretrained(self):
super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)
def test_single_file_legacy_scheduler_loading(self):
with tempfile.TemporaryDirectory() as tmpdir:
repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path)
local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir)
local_original_config = download_original_config(self.original_config, tmpdir)
pipe = self.pipeline_class.from_single_file(
local_ckpt_path,
original_config=local_original_config,
cache_dir=tmpdir,
local_files_only=True,
scheduler_type="euler",
)
# Default is PNDM for this checkpoint
assert isinstance(pipe.scheduler, EulerDiscreteScheduler)
def test_single_file_legacy_scaling_factor(self):
new_scaling_factor = 10.0
init_pipe = self.pipeline_class.from_single_file(self.ckpt_path)
pipe = self.pipeline_class.from_single_file(self.ckpt_path, scaling_factor=new_scaling_factor)
assert init_pipe.vae.config.scaling_factor != new_scaling_factor
assert pipe.vae.config.scaling_factor == new_scaling_factor
@slow
class StableDiffusion21PipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin):
pipeline_class = StableDiffusionPipeline
ckpt_path = "https://huggingface.co./stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors"
original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
repo_id = "stabilityai/stable-diffusion-2-1"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
inputs = {
"prompt": "a fantasy landscape, concept art, high resolution",
"generator": generator,
"num_inference_steps": 2,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_single_file_format_inference_is_same_as_pretrained(self):
super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)