Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,994 Bytes
9d7a635 e050cf3 a6267cc 9d7a635 a6267cc edc6d0e a6267cc 9d7a635 c7c4e9b 9d7a635 a980fa4 8cebbf6 9d7a635 8cebbf6 9d7a635 edc6d0e 9d7a635 4d51c4e 8cebbf6 edc6d0e 9d7a635 8cebbf6 9d7a635 8cebbf6 9d7a635 8cebbf6 c3445fa 8cebbf6 9d7a635 f2d1d62 6b56922 9d7a635 6b56922 9d7a635 8cebbf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import json
import base64
from io import BytesIO
from PIL import Image
import re
import torch
from transformers import Qwen2VLForConditionalGeneration, GenerationConfig, AutoProcessor
import spaces
def extract_answer_content(text: str) -> str:
"""
Extracts the content between <answer> and </answer> tags.
If no closing tag is found, extracts everything after the first <answer>.
Returns:
str: The extracted content.
"""
text = text.replace("```", " ").replace("json", " ").strip()
# Try to find full <answer>...</answer>
match = re.search(r"<answer>(.*?)</answer>", text, re.DOTALL)
if match:
return match.group(1).strip()
# Fallback: everything after the first <answer>
match = re.search(r"<answer>(.*)", text, re.DOTALL)
return match.group(1).strip() if match else text
def encode_image_to_base64(image: Image.Image, format: str = "PNG") -> str:
"""
Encode a PIL Image to a base64 string.
Args:
image (PIL.Image): The image to encode.
format (str): Image format to use (e.g., "PNG", "JPEG"). Default is "PNG".
Returns:
str: Base64-encoded string of the image.
"""
buffer = BytesIO()
image.save(buffer, format=format)
buffer.seek(0)
encoded_string = base64.b64encode(buffer.read()).decode("utf-8")
return encoded_string
SYSTEM_PROMPT = (
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant "
"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning "
"process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
"<think> reasoning process here </think><answer> answer here </answer>"
)
# Load model and processor
processor = AutoProcessor.from_pretrained("JosephZ/qwen2vl-7b-sft-grpo-close-sgg", max_pixels=1024*28*28)
device='cuda' if torch.cuda.is_available() else "cpu"
model = Qwen2VLForConditionalGeneration.from_pretrained("JosephZ/qwen2vl-7b-sft-grpo-close-sgg",
torch_dtype=torch.bfloat16,
device_map=device)
generation_config=GenerationConfig(
do_sample=True,
temperature=0.01,
top_k=1,
top_p=0.001,
repetition_penalty=1.0,
max_new_tokens=2048,
use_cache=True
)
def build_prompt(image, user_text):
#base64_image = encode_image_to_base64(image)
messages = [
{
"role": "system",
"content": SYSTEM_PROMPT
},
{
"role": "user",
"content": [
#{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}},
{"type": "image"},
{"type": "text", "text": user_text},
],
},
]
return messages
PROMPT_CLOSE="""Generate a structured scene graph for an image using the specified object and relationship categories.
### **Output Format:**
```json
{
"objects": [
{"id": "object_name.number", "bbox": [x1, y1, x2, y2]},
...
],
"relationships": [
{"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"},
...
]
}
```
### **Guidelines:**
- **Objects:**
- Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`.
- Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format.
- Include all visible objects, even if they have no relationships.
- **Relationships:**
- Define relationships using `"subject"`, `"predicate"`, and `"object"`.
- The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`.
- Omit relationships for orphan objects.
### **Example Output:**
```json
{
"objects": [
{"id": "person.1", "bbox": [120, 200, 350, 700]},
{"id": "bike.2", "bbox": [100, 600, 400, 800]},
{"id": "helmet.3", "bbox": [150, 150, 280, 240]},
{"id": "tree.4", "bbox": [500, 100, 750, 700]}
],
"relationships": [
{"subject": "person.1", "predicate": "riding", "object": "bike.2"},
{"subject": "person.1", "predicate": "wearing", "object": "helmet.3"}
]
}
```
Now, generate the complete scene graph for the provided image:
"""
def is_box(item):
return (
isinstance(item, (list, tuple)) and
len(item) == 4 and
all(isinstance(e, (int, float)) for e in item)
)
def scale_box(box, scale):
sw, sh = scale
return [int(box[0]*sw), int(box[1]*sh), int(box[2]*sw), int(box[3]*sh)]
@spaces.GPU
def generate_sgg(image):
global model
device='cuda' if torch.cuda.is_available() else "cpu"
if next(model.parameters()).device != torch.device(device):
model = model.to(device)
iw, ih = image.size
scale_factors = (iw / 1000.0, ih / 1000.0)
conversation = build_prompt(image, PROMPT_CLOSE)
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)
inputs = inputs.to(model.device)
with torch.no_grad():
output_ids = model.generate(**inputs, generation_config=generation_config)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
resp = extract_answer_content(output_text)
try:
resp = json.loads(resp)
pred_objs = resp['objects']
pred_rels = resp['relationships']
new_objs = []
for obj in pred_objs:
assert len(obj['bbox']) == 4, "len(obj['bbox']) != 4"
assert is_box(obj['bbox']), "invalid box :{}".format(obj['bbox'])
assert 'id' in obj, "invalid obj:{}".format(obj)
obj['bbox'] = scale_box(obj['bbox'], scale_factors)
new_objs.append(obj)
pred_objs = new_objs
resp = {"objects": pred_objs, "relationships": pred_rels}
# visualize pred_objs
draw = ImageDraw.Draw(image)
try:
font = ImageFont.truetype("arial.ttf", 16)
except:
font = ImageFont.load_default()
for obj in pred_objs:
bbox = obj["bbox"]
label = obj["id"]
draw.rectangle(bbox, outline="red", width=3)
draw.text((bbox[0], bbox[1] - 15), label, fill="red", font=font)
return image, f"objects:{pred_objs},\n relationships:{pred_rels}\n"
except:
return image, resp
gr.Interface(
fn=generate_sgg,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Textbox(label="Scene Graph")],
title="R1-SGG: Compile Scene Graphs with Reinforcement Learning",
description="Upload an image and generate a structured scene graph in JSON format."
).launch(share=True) |