Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,868 Bytes
c62903f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import importlib.metadata
import os
from typing import List, Optional
import torch
import torch.nn as nn
from packaging import version
from peft import PeftModel
from torch.utils.data import Sampler
from transformers import Trainer
from transformers.trainer import (
ALL_LAYERNORM_LAYERS,
get_parameter_names,
has_length,
is_sagemaker_mp_enabled,
logger,
)
from transformers.trainer_pt_utils import get_dataloader_sampler
from transformers.trainer_pt_utils import (
get_length_grouped_indices as get_length_grouped_indices_hf,
)
from transformers.trainer_pt_utils import get_model_param_count, get_parameter_names
from transformers.trainer_utils import (
HPSearchBackend,
TrainOutput,
has_length,
speed_metrics,
)
from transformers.training_args import ParallelMode
from transformers.utils import (
is_accelerate_available,
is_peft_available,
is_sagemaker_mp_enabled,
is_torch_xla_available,
)
TIME_STAMP = os.environ.get("TIME_STAMP", "default_value")
BYTENAS = os.environ.get("BYTENAS", "vl-research")
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
print(name, "no ignore status")
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {
k: t
for k, t in named_params
if any(key_match in k for key_match in keys_to_match)
}
to_return = {
k: maybe_zero_3(v, ignore_status=True, name=k).cpu()
for k, v in to_return.items()
}
return to_return
def split_to_even_chunks(indices, lengths, num_chunks):
"""
Split a list of indices into `chunks` chunks of roughly equal lengths.
"""
if len(indices) % num_chunks != 0:
return [indices[i::num_chunks] for i in range(num_chunks)]
num_indices_per_chunk = len(indices) // num_chunks
chunks = [[] for _ in range(num_chunks)]
chunks_lengths = [0 for _ in range(num_chunks)]
for index in indices:
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
chunks[shortest_chunk].append(index)
chunks_lengths[shortest_chunk] += lengths[index]
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
chunks_lengths[shortest_chunk] = float("inf")
return chunks
def get_variable_length_grouped_indices(
lengths, batch_size, world_size, megabatch_mult=8, generator=None
):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
indices = torch.randperm(len(lengths), generator=generator)
sorted_indices = sorted(range(len(lengths)), key=lambda i: lengths[i], reverse=True)
megabatch_size = world_size * batch_size * megabatch_mult
megabatches = [
sorted_indices[i : i + megabatch_size]
for i in range(0, len(lengths), megabatch_size)
]
megabatches = [
sorted(megabatch, key=lambda i: indices[i], reverse=True)
for megabatch in megabatches
]
shuffled_indices = [i for megabatch in megabatches for i in megabatch]
world_batch_size = world_size * batch_size
batches = [
shuffled_indices[i : i + world_batch_size]
for i in range(0, len(lengths), world_batch_size)
]
batch_indices = torch.randperm(len(batches), generator=generator)
batches = [batches[i] for i in batch_indices]
return [i for batch in batches for i in batch]
def get_modality_length_grouped_indices(
lengths, batch_size, world_size, generator=None
):
"""
Return a list of indices so that each slice of `batch_size` consecutive indices correspond to elements of similar
lengths. To do this, the indices are:
- randomly permuted
- grouped in mega-batches of size `mega_batch_mult * batch_size`
- reorder by length in each mega-batch
The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
maximum length placed first, so that an OOM happens sooner rather than later.
"""
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
assert all(l != 0 for l in lengths), "Should not have zero length."
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
# all samples are in the same modality
return get_length_grouped_indices(
lengths, batch_size, world_size, generator=generator
)
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
mm_shuffle = [
mm_indices[i]
for i in get_length_grouped_indices(
mm_lengths, batch_size, world_size, generator=None
)
]
lang_shuffle = [
lang_indices[i]
for i in get_length_grouped_indices(
lang_lengths, batch_size, world_size, generator=None
)
]
megabatch_size = world_size * batch_size
mm_megabatches = [
mm_shuffle[i : i + megabatch_size]
for i in range(0, len(mm_shuffle), megabatch_size)
]
lang_megabatches = [
lang_shuffle[i : i + megabatch_size]
for i in range(0, len(lang_shuffle), megabatch_size)
]
last_mm = mm_megabatches[-1]
last_lang = lang_megabatches[-1]
additional_batch = last_mm + last_lang
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
megabatch_indices = torch.randperm(len(megabatches), generator=generator)
megabatches = [megabatches[i] for i in megabatch_indices]
if len(additional_batch) > 0:
megabatches.append(sorted(additional_batch))
return [i for megabatch in megabatches for i in megabatch]
def get_length_grouped_indices(
lengths, batch_size, world_size, generator=None, merge=True
):
"""
Return a list of indices so that each slice of `batch_size` consecutive indices correspond to elements of similar
lengths. To do this, the indices are:
- randomly permuted
- grouped in mega-batches of size `mega_batch_mult * batch_size`
- reorder by length in each mega-batch
The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
maximum length placed first, so that an OOM happens sooner rather than later.
"""
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
indices = torch.randperm(len(lengths), generator=generator)
megabatch_size = world_size * batch_size
megabatches = [
indices[i : i + megabatch_size].tolist()
for i in range(0, len(lengths), megabatch_size)
]
megabatches = [
sorted(megabatch, key=lambda i: lengths[i], reverse=True)
for megabatch in megabatches
]
megabatches = [
split_to_even_chunks(megabatch, lengths, world_size)
for megabatch in megabatches
]
return [i for megabatch in megabatches for batch in megabatch for i in batch]
def get_length_grouped_indices_auto_single(
lengths, batch_size, world_size, generator=None
):
indices = get_length_grouped_indices_hf(
lengths, batch_size * world_size, generator=generator
)
megabatch_size = world_size * batch_size
megabatches = [
indices[i : i + megabatch_size] for i in range(0, len(lengths), megabatch_size)
]
megabatches = [
sorted(megabatch, key=lambda i: lengths[i], reverse=True)
for megabatch in megabatches
]
megabatches = [
split_to_even_chunks(megabatch, lengths, world_size)
for megabatch in megabatches
]
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
batch_indices = torch.randperm(len(megabatches), generator=generator)
megabatches = [megabatches[i] for i in batch_indices]
return [i for megabatch in megabatches for batch in megabatch for i in batch]
def get_modality_length_grouped_indices_auto(
lengths, batch_size, world_size, generator=None
):
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
assert all(l != 0 for l in lengths), "Should not have zero length."
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
# all samples are in the same modality
return get_length_grouped_indices_auto_single(
lengths, batch_size, world_size, generator=generator
)
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
mm_shuffle = [
mm_indices[i]
for i in get_length_grouped_indices_auto_single(
mm_lengths, batch_size, world_size, generator=None
)
]
lang_shuffle = [
lang_indices[i]
for i in get_length_grouped_indices_auto_single(
lang_lengths, batch_size, world_size, generator=None
)
]
megabatch_size = world_size * batch_size
mm_megabatches = [
mm_shuffle[i : i + megabatch_size]
for i in range(0, len(mm_shuffle), megabatch_size)
]
lang_megabatches = [
lang_shuffle[i : i + megabatch_size]
for i in range(0, len(lang_shuffle), megabatch_size)
]
last_mm = mm_megabatches[-1]
last_lang = lang_megabatches[-1]
additional_batch = last_mm + last_lang
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
megabatch_indices = torch.randperm(len(megabatches), generator=generator)
megabatches = [megabatches[i] for i in megabatch_indices]
if len(additional_batch) > 0:
megabatches.append(sorted(additional_batch))
return [i for megabatch in megabatches for i in megabatch]
class LengthGroupedSampler(Sampler):
r"""
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
keeping a bit of randomness.
"""
def __init__(
self,
batch_size: int,
world_size: int,
lengths: Optional[List[int]] = None,
generator=None,
variable_length: bool = False,
group_by_modality: bool = False,
group_by_modality_auto: bool = False,
):
if lengths is None:
raise ValueError("Lengths must be provided.")
self.batch_size = batch_size
self.world_size = world_size
self.lengths = lengths
self.generator = generator
self.variable_length = variable_length
self.group_by_modality = group_by_modality
self.group_by_modality_auto = group_by_modality_auto
def __len__(self):
return len(self.lengths)
def __iter__(self):
if self.variable_length:
assert (
not self.group_by_modality
), "Variable length grouping is not supported with modality grouping."
indices = get_variable_length_grouped_indices(
self.lengths, self.batch_size, self.world_size, generator=self.generator
)
else:
if self.group_by_modality:
indices = get_modality_length_grouped_indices(
self.lengths,
self.batch_size,
self.world_size,
generator=self.generator,
)
elif self.group_by_modality_auto:
indices = get_modality_length_grouped_indices_auto(
self.lengths,
self.batch_size,
self.world_size,
generator=self.generator,
)
else:
indices = get_length_grouped_indices_auto_single(
self.lengths,
self.batch_size,
self.world_size,
generator=self.generator,
)
return iter(indices)
def _is_peft_model(model):
if is_peft_available():
classes_to_check = (PeftModel,) if is_peft_available() else ()
# Here we also check if the model is an instance of `PeftMixedModel` introduced in peft>=0.7.0: https://github.com/huggingface/transformers/pull/28321
if version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0"):
from peft import PeftMixedModel
classes_to_check = (*classes_to_check, PeftMixedModel)
return isinstance(model, classes_to_check)
return False
TRAINER_STATE_NAME = "trainer_state.json"
class LLaVATrainer(Trainer):
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
if self.args.group_by_length:
lengths = self.train_dataset.lengths
return LengthGroupedSampler(
# self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps
self.args.train_batch_size,
# world_size=self.args.world_size,
world_size=self.args.world_size
* self.args.gradient_accumulation_steps, # TODO: seems that this may work?
lengths=lengths,
)
elif self.args.group_by_modality_length:
lengths = self.train_dataset.modality_lengths
return LengthGroupedSampler(
# self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps
self.args.train_batch_size,
# world_size=self.args.world_size,
world_size=self.args.world_size
* self.args.gradient_accumulation_steps, # TODO: seems that this may work?
lengths=lengths,
group_by_modality=True,
)
elif self.args.group_by_modality_length_auto:
lengths = self.train_dataset.modality_lengths
return LengthGroupedSampler(
# self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps
self.args.train_batch_size,
# world_size=self.args.world_size,
world_size=self.args.world_size
* self.args.gradient_accumulation_steps, # TODO: seems that this may work?
lengths=lengths,
group_by_modality_auto=True,
)
elif self.args.group_by_varlen:
lengths = self.train_dataset.lengths
return LengthGroupedSampler(
self.args.train_batch_size * self.args.gradient_accumulation_steps,
# self.args.train_batch_size, # TODO: seems that we should have gradient_accumulation_steps
# world_size=self.args.world_size,
world_size=self.args.world_size
* self.args.gradient_accumulation_steps, # TODO: seems that this may work?
lengths=lengths,
variable_length=True,
)
else:
return super()._get_train_sampler()
def create_optimizer(self):
"""
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
"""
if is_sagemaker_mp_enabled():
return super().create_optimizer()
opt_model = self.model
if self.optimizer is None:
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
lr_mapper = {}
if self.args.speech_projector_lr is not None:
lr_mapper["speech_projector"] = self.args.speech_projector_lr
if len(lr_mapper) > 0:
special_lr_parameters = [
name
for name, _ in opt_model.named_parameters()
if any(module_keyword in name for module_keyword in lr_mapper)
]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n in decay_parameters
and n not in special_lr_parameters
and p.requires_grad
)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n not in decay_parameters
and n not in special_lr_parameters
and p.requires_grad
)
],
"weight_decay": 0.0,
},
]
for module_keyword, lr in lr_mapper.items():
module_parameters = [
name
for name, _ in opt_model.named_parameters()
if module_keyword in name
]
optimizer_grouped_parameters.extend(
[
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n in decay_parameters
and n in module_parameters
and p.requires_grad
)
],
"weight_decay": self.args.weight_decay,
"lr": lr,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (
n not in decay_parameters
and n in module_parameters
and p.requires_grad
)
],
"weight_decay": 0.0,
"lr": lr,
},
]
)
else:
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n in decay_parameters and p.requires_grad)
],
"weight_decay": self.args.weight_decay,
},
{
"params": [
p
for n, p in opt_model.named_parameters()
if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(
self.args
)
self.optimizer = optimizer_cls(
optimizer_grouped_parameters, **optimizer_kwargs
)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum(
{
p.data_ptr(): p.numel() for p in module.parameters()
}.values()
)
logger.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(
module, "weight", {"optim_bits": 32}
)
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
logger.info(f"skipped: {skipped/2**20}M params")
return self.optimizer
def _save_checkpoint(self, model, trial, metrics=None):
if getattr(self.args, "tune_mm_mlp_adapter", False):
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
# Only save Adapter
keys_to_match = ["speech_projector"]
if getattr(self.args, "use_im_start_end", False):
keys_to_match.extend(["embed_tokens", "embed_in"])
weight_to_save = get_mm_adapter_state_maybe_zero_3(
self.model.named_parameters(), keys_to_match
)
if self.args.local_rank == 0 or self.args.local_rank == -1:
self.model.config.save_pretrained(output_dir)
torch.save(
weight_to_save, os.path.join(output_dir, f"speech_projector.bin")
)
else:
print("self.is_local_process_zero()", self.is_local_process_zero())
super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
if getattr(self.args, "tune_mm_mlp_adapter", False):
pass
super(LLaVATrainer, self)._save(output_dir, state_dict)
else:
super(LLaVATrainer, self)._save(output_dir, state_dict)
|