File size: 5,465 Bytes
0c693cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['data', 'audios', 'metadata', 'to_consider', 'processed_metadata', 'repo_id', 'learner', 'categories', 'title',
           'description', 'mic', 'label', 'examples', 'intf', 'process_audio_exists', 'load_x', 'load_label_tfm',
           'classify_audio']

# %% app.ipynb 1
import torch
import gradio as gr
from gradio import CSVLogger
from fastai.vision.all import *
import torchaudio
import torchaudio.transforms as T
import warnings
from huggingface_hub import from_pretrained_fastai

# %% app.ipynb 2
warnings.filterwarnings("ignore")

# %% app.ipynb 3
def process_audio_exists(audio):
    slice_name = audio.name
    
    # check if slice name exists in new metadata file
    row = processed_metadata.loc[processed_metadata['slice_file_name'] == slice_name].index.any()
    
    return row

# %% app.ipynb 4
data = Path('examples')
audios = get_files(data, extensions='.wav')

metadata = pd.read_csv('UrbanSound8K.csv')
to_consider = ['siren', 'street_music', 'children_playing', 'dog_bark', 'car_horn']
processed_metadata = metadata.loc[metadata['class'].isin(to_consider)]
processed_metadata.loc[processed_metadata['class'] == 'siren', 'classID'] = 4
processed_metadata.loc[processed_metadata['class'] == 'street_music', 'classID'] = 0

# %% app.ipynb 5
class load_x(Transform):
    def __init__(self):
        self.sr = 44100
        self.max_ms = 4000
        self.channels = 2
        # self.transform = transform
    def rechannel(self, waveform, sr):
        if (waveform.shape[0] == self.channels):
            # no rechanneling needed
            return waveform, sr
    
        if (self.channels==1):
            # converting stereo to mono
            # by selecting the first channel
            new_waveform = waveform[:1,:]
            
        elif (self.channels==2):
            # converting mono to stereo
            # by duplicating the first channel
            new_waveform = torch.cat([waveform, waveform])
        return new_waveform, sr
    
    def resample(self, waveform, sr):
        if (sr==self.sr):
            # no resampling needed
            return waveform, sr

        num_channels = waveform.shape[0]

        # resample first channel
        new_waveform = torchaudio.transforms.Resample(sr, self.sr)(waveform[:1,:])
        if (num_channels) > 1:
            # resample second channel and merge the two
            re_two = torchaudio.transforms.Resample(sr, self.sr)(waveform[1:,:])
            new_waveform = torch.cat([new_waveform, re_two])

        return (new_waveform, self.sr)
    
    def pad_trunc(self, waveform, sr):
        num_channels, num_frames = waveform.shape
        max_len = sr//1000 * self.max_ms

        if (num_frames>max_len):
          # truncate signal to given length
          waveform = waveform[:,:max_len]

        else:
            # get padding lengths for beginning and end
            begin_ln = random.randint(0, max_len-num_frames)
            end_ln = max_len - num_frames - begin_ln

            # pad the audio with zeros
            pad_begin = torch.zeros((num_channels, begin_ln))
            pad_end = torch.zeros((num_channels, end_ln))

            waveform = torch.cat((pad_begin, waveform, pad_end), 1)

        return (waveform, sr)
    
    def mel_specgram(self, waveform, sr):
        mel_tfm = T.MelSpectrogram(
            sample_rate=sr,
            n_fft=1024,
            win_length=None,
            hop_length=512,
            center=True,
            pad_mode="reflect",
            power=2.0,
            norm="slaney",
            onesided=True,
            n_mels=128,
            mel_scale="htk")
        
        spec = mel_tfm(waveform)
        
        waveform = torchaudio.transforms.AmplitudeToDB(top_db=80)(spec)
        
        return waveform, sr
        
    
    def encodes(self, x):
        waveform, sr = torchaudio.load(x)
        waveform, sr = self.resample(waveform, sr)
        waveform, sr = self.pad_trunc(waveform, sr)
        waveform, sr = self.rechannel(waveform, sr)
        waveform, sr = self.mel_specgram(waveform, sr)
        return waveform

    
class load_label_tfm(Transform):
    def __init__(self, metadata=processed_metadata): self.metadata = metadata
    def encodes(self, x): 
        return self.metadata.loc[self.metadata['slice_file_name'] == x.name]['class'].item()

# %% app.ipynb 6
repo_id = "Jimmie/urban8k"

learner = from_pretrained_fastai(repo_id)

# %% app.ipynb 14
categories = tuple(learner.dls.vocab)

def classify_audio(audio):
    # use Path to open audio
    audio_path = Path(audio)
    pred,idx,probs = learner.predict(audio_path)
    return dict(zip(categories, map(float, probs)))

# %% app.ipynb 16
title = "Environmental Sound Classification"

description = """
This demo showcases how AI can be used to recognize environmental sounds. It focuses specifically on 5 classes: car_horn, children_playing, dog_bark, siren and street music
 

When uploading audio, make sure it is in .wav format and is less than 4 seconds long.

Enjoy!
"""
mic = gr.Audio(source='upload', type="filepath", label='Upload Audio File here')
label = gr.outputs.Label()
examples = list(data.ls())

intf = gr.Interface(fn=classify_audio, inputs=mic, outputs=label, examples=examples,
                    title=title, description=description,  cache_examples=False, 
                    auto_submit_duration=5)

intf.launch(inline=False)