tolulope commited on
Commit
621038f
·
verified ·
1 Parent(s): 9db2de0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -57
app.py CHANGED
@@ -3,51 +3,9 @@ import transformers
3
  import torch
4
  from peft import PeftModel
5
  import os
6
- import csv
7
- import huggingface_hub
8
- from huggingface_hub import Repository, hf_hub_download, upload_file
9
- from datetime import datetime
10
 
11
- DATASET_REPO_URL = "https://huggingface.co/datasets/JerniganLab/chat-data"
12
- DATASET_REPO_ID = "JerniganLab/chat-data"
13
- DATA_FILENAME = "data.csv"
14
- DATA_FILE = os.path.join("data", DATA_FILENAME)
15
  HF_TOKEN = os.environ.get("HF_TOKEN")
16
 
17
-
18
- HF_TOKEN = os.environ.get("HF_TOKEN")
19
-
20
- # overriding/appending to the gradio template
21
- SCRIPT = """
22
- <script>
23
- if (!window.hasBeenRun) {
24
- window.hasBeenRun = true;
25
- console.log("should only happen once");
26
- document.querySelector("button.submit").click();
27
- }
28
- </script>
29
- """
30
- with open(os.path.join(gr.routes.STATIC_TEMPLATE_LIB, "frontend", "index.html"), "a") as f:
31
- f.write(SCRIPT)
32
-
33
- try:
34
- hf_hub_download(
35
- repo_id=DATASET_REPO_ID,
36
- filename=DATA_FILENAME,
37
- cache_dir=DATA_DIRNAME,
38
- repo_type='dataset',
39
- force_filename=DATA_FILENAME
40
- )
41
- except:
42
- print("file not found")
43
-
44
- repo = Repository(
45
- local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
46
- )
47
-
48
-
49
-
50
-
51
  model_id = "JerniganLab/interviews-and-qa"
52
  base_model = "meta-llama/Meta-Llama-3-8B-Instruct"
53
 
@@ -64,17 +22,6 @@ pipeline = transformers.pipeline(
64
 
65
  pipeline.model = PeftModel.from_pretrained(llama_model, model_id)
66
 
67
- def store_message(message: str, system_prompt: str, response: str):
68
- if response and message:
69
- with open(DATA_FILE, "a") as csvfile:
70
- writer = csv.DictWriter(csvfile, fieldnames=["message","system_prompt","response","time"])
71
- writer.writerow(
72
- {"message": message, "system_prompt": system_prompt, "response": response, "time": str(datetime.now())}
73
- )
74
- commit_url = repo.push_to_hub()
75
- # return generate_html()
76
-
77
-
78
  # def chat_function(message, history, system_prompt, max_new_tokens, temperature):
79
  # messages = [{"role":"system","content":system_prompt},
80
  # {"role":"user", "content":message}]
@@ -112,7 +59,6 @@ def chat_function(message, history, max_new_tokens, temperature):
112
  do_sample = True,
113
  temperature = temperature + 0.1,
114
  top_p = 0.9,)
115
- store_message(message, system_prompt, outputs[0]["generated_text"][len(prompt):])
116
  return outputs[0]["generated_text"][len(prompt):]
117
 
118
  """
@@ -136,9 +82,7 @@ demo = gr.ChatInterface(
136
  additional_inputs=[
137
  gr.Slider(100,4000, label="Max New Tokens"),
138
  gr.Slider(0,1, label="Temperature")
139
- ],
140
- type="messages",
141
- save_history=True,
142
  )
143
 
144
 
 
3
  import torch
4
  from peft import PeftModel
5
  import os
 
 
 
 
6
 
 
 
 
 
7
  HF_TOKEN = os.environ.get("HF_TOKEN")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  model_id = "JerniganLab/interviews-and-qa"
10
  base_model = "meta-llama/Meta-Llama-3-8B-Instruct"
11
 
 
22
 
23
  pipeline.model = PeftModel.from_pretrained(llama_model, model_id)
24
 
 
 
 
 
 
 
 
 
 
 
 
25
  # def chat_function(message, history, system_prompt, max_new_tokens, temperature):
26
  # messages = [{"role":"system","content":system_prompt},
27
  # {"role":"user", "content":message}]
 
59
  do_sample = True,
60
  temperature = temperature + 0.1,
61
  top_p = 0.9,)
 
62
  return outputs[0]["generated_text"][len(prompt):]
63
 
64
  """
 
82
  additional_inputs=[
83
  gr.Slider(100,4000, label="Max New Tokens"),
84
  gr.Slider(0,1, label="Temperature")
85
+ ]
 
 
86
  )
87
 
88