import os os.environ["HOME"] = "/root" os.environ["HF_HOME"] = "/tmp/hf_cache" import logging import threading import tempfile import uuid import torch import numpy as np import soundfile as sf import torchaudio import wave import time from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks from fastapi.responses import JSONResponse from fastapi.staticfiles import StaticFiles from typing import Dict, Any, Optional, Tuple from datetime import datetime, timedelta # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger("talklas-api") app = FastAPI(title="Talklas API") # Mount a directory to serve audio files AUDIO_DIR = "/tmp/audio_output" # Use /tmp for temporary files os.makedirs(AUDIO_DIR, exist_ok=True) app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output") # Global variables to track application state models_loaded = False loading_in_progress = False loading_thread = None model_status = { "stt": "not_loaded", "mt": "not_loaded", "tts": "not_loaded" } error_message = None current_tts_language = "tgl" # Track the current TTS language # Model instances stt_processor = None stt_model = None mt_model = None mt_tokenizer = None tts_model = None tts_tokenizer = None # Define the valid languages and mappings LANGUAGE_MAPPING = { "English": "eng", "Tagalog": "tgl", "Cebuano": "ceb", "Ilocano": "ilo", "Waray": "war", "Pangasinan": "pag" } NLLB_LANGUAGE_CODES = { "eng": "eng_Latn", "tgl": "tgl_Latn", "ceb": "ceb_Latn", "ilo": "ilo_Latn", "war": "war_Latn", "pag": "pag_Latn" } # Function to save PCM data as a WAV file def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str): # Convert pcm_data to a NumPy array of 16-bit integers pcm_array = np.array(pcm_data, dtype=np.int16) with wave.open(output_path, 'wb') as wav_file: # Set WAV parameters: 1 channel (mono), 2 bytes per sample (16-bit), sample rate wav_file.setnchannels(1) wav_file.setsampwidth(2) # 16-bit audio wav_file.setframerate(sample_rate) # Write the 16-bit PCM data as bytes (little-endian) wav_file.writeframes(pcm_array.tobytes()) # Function to detect speech using an energy-based approach def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool: """ Detects if the audio contains speech using an energy-based approach. Returns True if speech is detected, False otherwise. """ # Convert waveform to numpy array waveform_np = waveform.numpy() if waveform_np.ndim > 1: waveform_np = waveform_np.mean(axis=0) # Convert stereo to mono # Compute RMS energy rms = np.sqrt(np.mean(waveform_np**2)) logger.info(f"RMS energy: {rms}") # Check if RMS energy exceeds the threshold if rms < threshold: logger.info("No speech detected: RMS energy below threshold") return False # Optionally, check for minimum speech duration (requires more sophisticated VAD) # For now, we assume if RMS is above threshold, there is speech return True # Function to clean up old audio files def cleanup_old_audio_files(): logger.info("Starting cleanup of old audio files...") expiration_time = datetime.now() - timedelta(minutes=10) # Files older than 10 minutes for filename in os.listdir(AUDIO_DIR): file_path = os.path.join(AUDIO_DIR, filename) if os.path.isfile(file_path): file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path)) if file_mtime < expiration_time: try: os.unlink(file_path) logger.info(f"Deleted old audio file: {file_path}") except Exception as e: logger.error(f"Error deleting file {file_path}: {str(e)}") # Background task to periodically clean up audio files def schedule_cleanup(): while True: cleanup_old_audio_files() time.sleep(300) # Run every 5 minutes (300 seconds) # Function to load models in background def load_models_task(): global models_loaded, loading_in_progress, model_status, error_message global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer try: loading_in_progress = True # Load STT model (MMS with fallback to Whisper) logger.info("Starting to load STT model...") from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration try: logger.info("Loading MMS STT model...") model_status["stt"] = "loading" stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all") stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all") device = "cuda" if torch.cuda.is_available() else "cpu" stt_model.to(device) logger.info("MMS STT model loaded successfully") model_status["stt"] = "loaded_mms" except Exception as mms_error: logger.error(f"Failed to load MMS STT model: {str(mms_error)}") logger.info("Falling back to Whisper STT model...") try: stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") stt_model.to(device) logger.info("Whisper STT model loaded successfully as fallback") model_status["stt"] = "loaded_whisper" except Exception as whisper_error: logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}") model_status["stt"] = "failed" error_message = f"STT model loading failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}" return # Load MT model logger.info("Starting to load MT model...") from transformers import AutoModelForSeq2SeqLM, AutoTokenizer try: logger.info("Loading NLLB-200-distilled-600M model...") model_status["mt"] = "loading" mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") mt_model.to(device) logger.info("MT model loaded successfully") model_status["mt"] = "loaded" except Exception as e: logger.error(f"Failed to load MT model: {str(e)}") model_status["mt"] = "failed" error_message = f"MT model loading failed: {str(e)}" return # Load TTS model (default to Tagalog, will be updated dynamically) logger.info("Starting to load TTS model...") from transformers import VitsModel, AutoTokenizer try: logger.info("Loading MMS-TTS model for Tagalog...") model_status["tts"] = "loading" tts_model = VitsModel.from_pretrained("facebook/mms-tts-tgl") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl") tts_model.to(device) logger.info("TTS model loaded successfully") model_status["tts"] = "loaded" except Exception as e: logger.error(f"Failed to load TTS model for Tagalog: {str(e)}") # Fallback to English TTS if the target language fails try: logger.info("Falling back to MMS-TTS English model...") tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") tts_model.to(device) logger.info("Fallback TTS model loaded successfully") model_status["tts"] = "loaded (fallback)" current_tts_language = "eng" except Exception as e2: logger.error(f"Failed to load fallback TTS model: {str(e2)}") model_status["tts"] = "failed" error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})" return models_loaded = True logger.info("Model loading completed successfully") except Exception as e: error_message = str(e) logger.error(f"Error in model loading task: {str(e)}") finally: loading_in_progress = False # Start loading models in background def start_model_loading(): global loading_thread, loading_in_progress if not loading_in_progress and not models_loaded: loading_in_progress = True loading_thread = threading.Thread(target=load_models_task) loading_thread.daemon = True loading_thread.start() # Start the background cleanup task def start_cleanup_task(): cleanup_thread = threading.Thread(target=schedule_cleanup) cleanup_thread.daemon = True cleanup_thread.start() # Start the background processes when the app starts @app.on_event("startup") async def startup_event(): logger.info("Application starting up...") start_model_loading() start_cleanup_task() @app.get("/") async def root(): """Root endpoint for default health check""" logger.info("Root endpoint requested") return {"status": "healthy"} @app.get("/health") async def health_check(): """Health check endpoint that always returns successfully""" global models_loaded, loading_in_progress, model_status, error_message logger.info("Health check requested") return { "status": "healthy", "models_loaded": models_loaded, "loading_in_progress": loading_in_progress, "model_status": model_status, "error": error_message } @app.post("/update-languages") async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)): global stt_processor, stt_model, tts_model, tts_tokenizer, current_tts_language if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING: raise HTTPException(status_code=400, detail="Invalid language selected") source_code = LANGUAGE_MAPPING[source_lang] target_code = LANGUAGE_MAPPING[target_lang] # Update the STT model based on the source language (MMS or Whisper) try: logger.info("Updating STT model for source language...") from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration device = "cuda" if torch.cuda.is_available() else "cpu" try: logger.info(f"Loading MMS STT model for {source_code}...") stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all") stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all") stt_model.to(device) # Set the target language for MMS if source_code in stt_processor.tokenizer.vocab.keys(): stt_processor.tokenizer.set_target_lang(source_code) stt_model.load_adapter(source_code) logger.info(f"MMS STT model updated to {source_code}") model_status["stt"] = "loaded_mms" else: logger.warning(f"Language {source_code} not supported by MMS, using default") model_status["stt"] = "loaded_mms_default" except Exception as mms_error: logger.error(f"Failed to load MMS STT model for {source_code}: {str(mms_error)}") logger.info("Falling back to Whisper STT model...") try: stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") stt_model.to(device) logger.info("Whisper STT model loaded successfully as fallback") model_status["stt"] = "loaded_whisper" except Exception as whisper_error: logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}") model_status["stt"] = "failed" error_message = f"STT model update failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}" return {"status": "failed", "error": error_message} except Exception as e: logger.error(f"Error updating STT model: {str(e)}") model_status["stt"] = "failed" error_message = f"STT model update failed: {str(e)}" return {"status": "failed", "error": error_message} # Update the TTS model based on the target language try: logger.info(f"Loading MMS-TTS model for {target_code}...") from transformers import VitsModel, AutoTokenizer tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}") tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}") tts_model.to(device) current_tts_language = target_code logger.info(f"TTS model updated to {target_code}") model_status["tts"] = "loaded" except Exception as e: logger.error(f"Failed to load TTS model for {target_code}: {str(e)}") try: logger.info("Falling back to MMS-TTS English model...") tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") tts_model.to(device) current_tts_language = "eng" logger.info("Fallback TTS model loaded successfully") model_status["tts"] = "loaded (fallback)" except Exception as e2: logger.error(f"Failed to load fallback TTS model: {str(e2)}") model_status["tts"] = "failed" error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})" return {"status": "failed", "error": error_message} logger.info(f"Updating languages: {source_lang} → {target_lang}") return {"status": f"Languages updated to {source_lang} → {target_lang}"} @app.post("/translate-text") async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)): """Endpoint to translate text and convert to speech""" global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language if not text: raise HTTPException(status_code=400, detail="No text provided") if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING: raise HTTPException(status_code=400, detail="Invalid language selected") logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}") request_id = str(uuid.uuid4()) # Translate the text source_code = LANGUAGE_MAPPING[source_lang] target_code = LANGUAGE_MAPPING[target_lang] translated_text = "Translation not available" if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None: try: source_nllb_code = NLLB_LANGUAGE_CODES[source_code] target_nllb_code = NLLB_LANGUAGE_CODES[target_code] mt_tokenizer.src_lang = source_nllb_code device = "cuda" if torch.cuda.is_available() else "cpu" inputs = mt_tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): generated_tokens = mt_model.generate( **inputs, forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code), max_length=448 ) translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] logger.info(f"Translation completed: {translated_text}") except Exception as e: logger.error(f"Error during translation: {str(e)}") translated_text = f"Translation failed: {str(e)}" else: logger.warning("MT model not loaded, skipping translation") # Update TTS model if the target language doesn't match the current TTS language if current_tts_language != target_code: try: logger.info(f"Updating TTS model for {target_code}...") from transformers import VitsModel, AutoTokenizer tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}") tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}") tts_model.to(device) current_tts_language = target_code logger.info(f"TTS model updated to {target_code}") model_status["tts"] = "loaded" except Exception as e: logger.error(f"Failed to load TTS model for {target_code}: {str(e)}") try: logger.info("Falling back to MMS-TTS English model...") tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") tts_model.to(device) current_tts_language = "eng" logger.info("Fallback TTS model loaded successfully") model_status["tts"] = "loaded (fallback)" except Exception as e2: logger.error(f"Failed to load fallback TTS model: {str(e2)}") model_status["tts"] = "failed" # Convert translated text to speech output_audio_url = None if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None: try: inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device) with torch.no_grad(): output = tts_model(**inputs) speech = output.waveform.cpu().numpy().squeeze() speech = (speech * 32767).astype(np.int16) sample_rate = tts_model.config.sampling_rate # Save the audio as a WAV file output_filename = f"{request_id}.wav" output_path = os.path.join(AUDIO_DIR, output_filename) save_pcm_to_wav(speech.tolist(), sample_rate, output_path) logger.info(f"Saved synthesized audio to {output_path}") # Generate a URL to the WAV file output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}" logger.info("TTS conversion completed") except Exception as e: logger.error(f"Error during TTS conversion: {str(e)}") output_audio_url = None return { "request_id": request_id, "status": "completed", "message": "Translation and TTS completed (or partially completed).", "source_text": text, "translated_text": translated_text, "output_audio": output_audio_url } @app.post("/translate-audio") async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)): """Endpoint to transcribe, translate, and convert audio to speech""" global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language if not audio: raise HTTPException(status_code=400, detail="No audio file provided") if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING: raise HTTPException(status_code=400, detail="Invalid language selected") logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}") request_id = str(uuid.uuid4()) # Check if STT model is loaded if model_status["stt"] not in ["loaded_mms", "loaded_mms_default", "loaded_whisper"] or stt_processor is None or stt_model is None: logger.warning("STT model not loaded, returning placeholder response") return { "request_id": request_id, "status": "processing", "message": "STT model not loaded yet. Please try again later.", "source_text": "Transcription not available", "translated_text": "Translation not available", "output_audio": None } # Save the uploaded audio to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file: temp_file.write(await audio.read()) temp_path = temp_file.name transcription = "Transcription not available" translated_text = "Translation not available" output_audio_url = None try: # Step 1: Load and resample the audio using torchaudio logger.info(f"Reading audio file: {temp_path}") waveform, sample_rate = torchaudio.load(temp_path) logger.info(f"Audio loaded: sample_rate={sample_rate}, waveform_shape={waveform.shape}") # Resample to 16 kHz if needed (required by Whisper and MMS models) if sample_rate != 16000: logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz") resampler = torchaudio.transforms.Resample(sample_rate, 16000) waveform = resampler(waveform) sample_rate = 16000 # Step 2: Detect speech if not detect_speech(waveform, sample_rate): return { "request_id": request_id, "status": "failed", "message": "No speech detected in the audio.", "source_text": "No speech detected", "translated_text": "No translation available", "output_audio": None } # Step 3: Transcribe the audio (STT) device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {device}") inputs = stt_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device) logger.info("Audio processed, generating transcription...") with torch.no_grad(): if model_status["stt"] == "loaded_whisper": # Whisper model generated_ids = stt_model.generate(**inputs, language="en") transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] else: # MMS model logits = stt_model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = stt_processor.batch_decode(predicted_ids)[0] logger.info(f"Transcription completed: {transcription}") # Step 4: Translate the transcribed text (MT) source_code = LANGUAGE_MAPPING[source_lang] target_code = LANGUAGE_MAPPING[target_lang] if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None: try: source_nllb_code = NLLB_LANGUAGE_CODES[source_code] target_nllb_code = NLLB_LANGUAGE_CODES[target_code] mt_tokenizer.src_lang = source_nllb_code inputs = mt_tokenizer(transcription, return_tensors="pt").to(device) with torch.no_grad(): generated_tokens = mt_model.generate( **inputs, forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code), max_length=448 ) translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] logger.info(f"Translation completed: {translated_text}") except Exception as e: logger.error(f"Error during translation: {str(e)}") translated_text = f"Translation failed: {str(e)}" else: logger.warning("MT model not loaded, skipping translation") # Step 5: Update TTS model if the target language doesn't match the current TTS language if current_tts_language != target_code: try: logger.info(f"Updating TTS model for {target_code}...") from transformers import VitsModel, AutoTokenizer tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}") tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}") tts_model.to(device) current_tts_language = target_code logger.info(f"TTS model updated to {target_code}") model_status["tts"] = "loaded" except Exception as e: logger.error(f"Failed to load TTS model for {target_code}: {str(e)}") try: logger.info("Falling back to MMS-TTS English model...") tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") tts_model.to(device) current_tts_language = "eng" logger.info("Fallback TTS model loaded successfully") model_status["tts"] = "loaded (fallback)" except Exception as e2: logger.error(f"Failed to load fallback TTS model: {str(e2)}") model_status["tts"] = "failed" # Step 6: Convert translated text to speech (TTS) if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None: try: inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device) with torch.no_grad(): output = tts_model(**inputs) speech = output.waveform.cpu().numpy().squeeze() speech = (speech * 32767).astype(np.int16) sample_rate = tts_model.config.sampling_rate # Save the audio as a WAV file output_filename = f"{request_id}.wav" output_path = os.path.join(AUDIO_DIR, output_filename) save_pcm_to_wav(speech.tolist(), sample_rate, output_path) logger.info(f"Saved synthesized audio to {output_path}") # Generate a URL to the WAV file output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}" logger.info("TTS conversion completed") except Exception as e: logger.error(f"Error during TTS conversion: {str(e)}") output_audio_url = None return { "request_id": request_id, "status": "completed", "message": "Transcription, translation, and TTS completed (or partially completed).", "source_text": transcription, "translated_text": translated_text, "output_audio": output_audio_url } except Exception as e: logger.error(f"Error during processing: {str(e)}") return { "request_id": request_id, "status": "failed", "message": f"Processing failed: {str(e)}", "source_text": transcription, "translated_text": translated_text, "output_audio": output_audio_url } finally: logger.info(f"Cleaning up temporary file: {temp_path}") os.unlink(temp_path) if __name__ == "__main__": import uvicorn logger.info("Starting Uvicorn server...") uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)