JasonTPhillipsJr commited on
Commit
f7a8863
·
verified ·
1 Parent(s): 30309f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -10
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import streamlit as st
2
  import spacy
3
  import torch
 
4
  from transformers import BertTokenizer, BertModel
5
  from transformers.models.bert.modeling_bert import BertForMaskedLM
6
 
@@ -142,16 +143,38 @@ def processSpatialEntities(review, nlp):
142
  return processed_embedding
143
 
144
 
145
-
146
-
147
- #dConfig = AutoConfig.from_pretrained("bert-base-uncased")
148
- #hidden_size = int(dConfig.hidden_size)
149
- #num_hidden_layers_d = 2;
150
- #hidden_levels_d = [hidden_size for i in range(0, num_hidden_layers_d)]
151
- #label_list = ["1", "0"]
152
- #label_list.append('UNL')
153
- #discriminator = Discriminator(input_size=hidden_size*2, hidden_sizes=hidden_levels_d, num_labels=len(label_list), dropout_rate=out_dropout_rate).to(device)
154
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
 
157
  # Function to read reviews from a text file
 
1
  import streamlit as st
2
  import spacy
3
  import torch
4
+ import torch.nn as nn
5
  from transformers import BertTokenizer, BertModel
6
  from transformers.models.bert.modeling_bert import BertForMaskedLM
7
 
 
143
  return processed_embedding
144
 
145
 
146
+ #Initialize discriminator module
147
+ class Discriminator(nn.Module):
148
+ def __init__(self, input_size=512, hidden_sizes=[512], num_labels=2, dropout_rate=0.1):
149
+ super(Discriminator, self).__init__()
150
+ self.input_dropout = nn.Dropout(p=dropout_rate)
151
+ layers = []
152
+ hidden_sizes = [input_size] + hidden_sizes
153
+ for i in range(len(hidden_sizes)-1):
154
+ layers.extend([nn.Linear(hidden_sizes[i], hidden_sizes[i+1]), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(dropout_rate)])
155
+
156
+ self.layers = nn.Sequential(*layers) #per il flatten
157
+ self.logit = nn.Linear(hidden_sizes[-1],num_labels+1) # +1 for the probability of this sample being fake/real.
158
+ self.softmax = nn.Softmax(dim=-1)
159
+
160
+ def forward(self, input_rep):
161
+ input_rep = self.input_dropout(input_rep)
162
+ last_rep = self.layers(input_rep)
163
+ logits = self.logit(last_rep)
164
+ probs = self.softmax(logits)
165
+ return last_rep, logits, probs
166
+
167
+ dConfig = AutoConfig.from_pretrained("bert-base-uncased")
168
+ hidden_size = int(dConfig.hidden_size)
169
+ num_hidden_layers_d = 2;
170
+ hidden_levels_d = [hidden_size for i in range(0, num_hidden_layers_d)]
171
+ label_list = ["1", "0"]
172
+ label_list.append('UNL')
173
+
174
+ discriminator = Discriminator(input_size=hidden_size*2, hidden_sizes=hidden_levels_d, num_labels=len(label_list), dropout_rate=out_dropout_rate).to(device)
175
+ discriminator_weights = ('data/datasets/discriminator_weights.pth')
176
+ discriminator.load_state_dict(torch.load(discriminator_weights))
177
+ discriminator.eval()
178
 
179
 
180
  # Function to read reviews from a text file