Florence-2-demo / app.py
Itanutiwari527's picture
Uploading app.py
981c23a verified
import streamlit as st
import torch
import numpy as np
import pandas as pd
from PIL import Image, ImageDraw
from transformers import AutoProcessor, AutoModelForCausalLM
# Device settings
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load model with caching
@st.cache_resource
def load_model():
CHECKPOINT = "microsoft/Florence-2-base-ft"
model = AutoModelForCausalLM.from_pretrained(CHECKPOINT, trust_remote_code=True).to(device, dtype=torch_dtype)
processor = AutoProcessor.from_pretrained(CHECKPOINT, trust_remote_code=True)
return model, processor
# Load the model and processor
try:
model, processor = load_model()
except Exception as e:
st.error(f"Model loading failed: {e}")
st.stop()
# UI title
st.title("Florence-2 Multi-Modal Model Playground")
# Task selector
task = st.selectbox("Select Task", ["Object Detection (OD)", "Phrase Grounding (PG)", "Image Captioning (IC)"])
# Phrase input for PG
phrase = ""
if task == "Phrase Grounding (PG)":
phrase = st.text_input("Enter phrase for grounding (e.g., 'A red car')", "")
# Image uploader
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
# If file uploaded
if uploaded_file:
try:
image = Image.open(uploaded_file).convert("RGB")
except Exception as e:
st.error(f"Error loading image: {e}")
st.stop()
st.image(image, caption="Uploaded Image", use_container_width=True)
# Task-specific prompt
if task == "Object Detection (OD)":
task_prompt = "<OD>"
elif task == "Phrase Grounding (PG)":
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
else:
task_prompt = "<CAPTION>"
# Preprocess inputs
try:
inputs = processor(text=task_prompt + phrase, images=image, return_tensors="pt").to(device, torch_dtype)
except Exception as e:
st.error(f"Error during preprocessing: {e}")
st.stop()
# Generate output
with torch.no_grad():
try:
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=512,
num_beams=3,
do_sample=False
)
except Exception as e:
st.error(f"Error during generation: {e}")
st.stop()
# Decode and post-process
try:
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
except Exception as e:
st.error(f"Post-processing failed: {e}")
st.stop()
# Display results
if task in ["Object Detection (OD)", "Phrase Grounding (PG)"]:
key = "<OD>" if task == "Object Detection (OD)" else "<CAPTION_TO_PHRASE_GROUNDING>"
detections = parsed_answer.get(key, {"bboxes": [], "labels": []})
bboxes = detections.get("bboxes", [])
labels = detections.get("labels", [])
draw = ImageDraw.Draw(image)
data = []
for bbox, label in zip(bboxes, labels):
x_min, y_min, x_max, y_max = map(int, bbox)
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
draw.text((x_min, max(0, y_min - 10)), label, fill="red")
data.append([x_min, y_min, x_max - x_min, y_max - y_min, label])
st.image(image, caption="Detected Objects", use_container_width=True)
df = pd.DataFrame(data, columns=["x", "y", "w", "h", "object"])
st.dataframe(df)
else:
caption = parsed_answer.get("<CAPTION>", "No caption generated.")
st.subheader("Generated Caption:")
st.success(caption)