import torch import numpy as np def compute_dataset_embeds_svd(all_embeds, rank): # Perform SVD on the combined matrix u, s, vh = np.linalg.svd(all_embeds, full_matrices=False) # Select the top `rank` singular vectors to construct the projection matrix vh = vh[:rank] # Top `rank` right singular vectors projection_matrix = vh.T @ vh # Shape: (feature_dim, feature_dim) return projection_matrix def get_embedding_composition(embed, projections_data): # Initialize the combined embedding with the input embed combined_embeds = embed.copy() for proj_data in projections_data: # Add the combined projection to the result combined_embeds -= embed @ proj_data["projection_matrix"] combined_embeds += proj_data["embed"] @ proj_data["projection_matrix"] return combined_embeds def get_modified_images_embeds_composition(embed, projections_data, ip_model, prompt=None, scale=1.0, num_samples=3, seed=420, num_inference_steps=50): final_embeds = get_embedding_composition(embed, projections_data) clip_embeds = torch.from_numpy(final_embeds) images = ip_model.generate(clip_image_embeds=clip_embeds, prompt=prompt, num_samples=num_samples, num_inference_steps=num_inference_steps, seed=seed, guidance_scale=7.5, scale=scale) return images