ip-composer / app.py
multimodalart's picture
Update app.py
0003fa8 verified
import os
import json
import torch
import gc
import numpy as np
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
from IP_Composer.generate_text_embeddings import load_descriptions, generate_embeddings
import spaces
import random
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize SDXL pipeline
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
add_watermarker=False,
)
# Initialize IP-Adapter
image_encoder_repo = 'h94/IP-Adapter'
image_encoder_subfolder = 'models/image_encoder'
ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin')
ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device)
# Initialize CLIP model
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
clip_model.to(device)
tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
CONCEPTS_MAP={
"age": "age_descriptions.npy",
"animal fur": "fur_descriptions.npy",
"dogs": "dog_descriptions.npy",
"emotions": "emotion_descriptions.npy",
"flowers": "flower_descriptions.npy",
"fruit/vegtable": "fruit_vegetable_descriptions.npy",
"outfit type": "outfit_descriptions.npy",
"outfit pattern (including color)": "outfit_pattern_descriptions.npy",
"patterns": "pattern_descriptions.npy",
"patterns (including color)": "pattern_descriptions_with_colors.npy",
"vehicle": "vehicle_descriptions.npy",
"daytime": "times_of_day_descriptions.npy",
"pose": "person_poses_descriptions.npy",
"season": "season_descriptions.npy",
"material": "material_descriptions_with_gems.npy"
}
RANKS_MAP={
"age": 30,
"animal fur": 80,
"dogs": 30,
"emotions": 30,
"flowers": 30,
"fruit/vegtable": 30,
"outfit type": 30,
"outfit pattern (including color)": 80,
"patterns": 80,
"patterns (including color)": 80,
"vehicle": 30,
"daytime": 30,
"pose": 30,
"season": 30,
"material": 80,
}
concept_options = list(CONCEPTS_MAP.keys())
examples = [
['./IP_Composer/assets/patterns/base.jpg', './IP_Composer/assets/patterns/pattern.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/flowers/base.png', './IP_Composer/assets/flowers/concept.png', 'flowers', None, None, None, None, 30, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/materials/base.png', './IP_Composer/assets/materials/concept.jpg', 'material', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/vehicle/base.png', './IP_Composer/assets/vehicle/concept.png', 'vehicle', None, None, None, None, 30, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/dog_daytime/base.png', './IP_Composer/assets/dog_daytime/daytime.png', 'daytime', './IP_Composer/assets/dog_daytime/dog.png', 'dogs', None, None, 30, 140, 30, None,1.0,0, 30],
['./IP_Composer/assets/pose_material/base.png', './IP_Composer/assets/pose_material/material.jpg', 'material', './IP_Composer/assets/pose_material/pose.png', 'pose', None, None, 30, 80, 30, None,1.0,0, 30],
['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/red_pattern.png', 'patterns (including color)', None, None, None, None, 100, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/emotions/joyful.png', './IP_Composer/assets/emotions/sad.png', 'emotions', './IP_Composer/assets/age/kid.png', 'age', None, None, 30, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/flowers/rose_1.jpg', './IP_Composer/assets/flowers/flowers_3.jpg', 'flowers', None, None, None, None, 30, 30, 30, None,1.0,0, 30],
]
def generate_examples(base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps):
return process_and_display(base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps)
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def change_rank_default(concept_name):
return RANKS_MAP.get(concept_name, 30)
@spaces.GPU
def match_image_to_concept(image):
"""
Match an uploaded image to the closest concept type using CLIP embeddings
"""
if image is None:
return None
# Get image embeddings
img_pil = Image.fromarray(image).convert("RGB")
img_embed = get_image_embeds(img_pil, clip_model, preprocess, device)
# Calculate similarity to each concept
similarities = {}
for concept_name, concept_file in CONCEPTS_MAP.items():
try:
# Load concept embeddings
embeds_path = f"./IP_Composer/text_embeddings/{concept_file}"
with open(embeds_path, "rb") as f:
concept_embeds = np.load(f)
# Calculate similarity to each text embedding
sim_scores = []
for embed in concept_embeds:
# Normalize both embeddings
img_embed_norm = img_embed / np.linalg.norm(img_embed)
text_embed_norm = embed / np.linalg.norm(embed)
# Calculate cosine similarity
similarity = np.dot(img_embed_norm.flatten(), text_embed_norm.flatten())
sim_scores.append(similarity)
# Use the average of top 5 similarities for better matching
sim_scores.sort(reverse=True)
top_similarities = sim_scores[:min(5, len(sim_scores))]
avg_similarity = sum(top_similarities) / len(top_similarities)
similarities[concept_name] = avg_similarity
except Exception as e:
print(f"Error processing concept {concept_name}: {e}")
# Return the concept with highest similarity
if similarities:
matched_concept = max(similarities.items(), key=lambda x: x[1])[0]
# Display a notification to the user
gr.Info(f"Image automatically matched to concept: {matched_concept}")
return matched_concept
return None
@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
"""Get CLIP image embeddings for a given PIL image"""
image = preproc(pil_image)[np.newaxis, :, :, :]
with torch.no_grad():
embeds = model.encode_image(image.to(dev))
return embeds.cpu().detach().numpy()
@spaces.GPU
def process_images(
base_image,
concept_image1, concept_name1,
concept_image2=None, concept_name2=None,
concept_image3=None, concept_name3=None,
rank1=10, rank2=10, rank3=10,
prompt=None,
scale=1.0,
seed=420,
num_inference_steps=50,
concpet_from_file_1 = None,
concpet_from_file_2 = None,
concpet_from_file_3 = None,
use_concpet_from_file_1 = False,
use_concpet_from_file_2 = False,
use_concpet_from_file_3 = False
):
"""Process the base image and concept images to generate modified images"""
# Process base image
base_image_pil = Image.fromarray(base_image).convert("RGB")
base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device)
# Process concept images
concept_images = []
concept_descriptions = []
skip_load_concept =[False,False, False]
# for demo purposes we allow for up to 3 different concepts and corresponding concept images
if concept_image1 is not None:
concept_images.append(concept_image1)
if use_concpet_from_file_1 and concpet_from_file_1 is not None: # if concept is new from user input
concept_descriptions.append(concpet_from_file_1)
skip_load_concept[0] = True
else:
concept_descriptions.append(CONCEPTS_MAP[concept_name1])
else:
return None, "Please upload at least one concept image"
# Add second concept (optional)
if concept_image2 is not None:
concept_images.append(concept_image2)
if use_concpet_from_file_2 and concpet_from_file_2 is not None: # if concept is new from user input
concept_descriptions.append(concpet_from_file_2)
skip_load_concept[1] = True
else:
concept_descriptions.append(CONCEPTS_MAP[concept_name2])
# Add third concept (optional)
if concept_image3 is not None:
concept_images.append(concept_image3)
if use_concpet_from_file_3 and concpet_from_file_3 is not None: # if concept is new from user input
concept_descriptions.append(concpet_from_file_3)
skip_load_concept[2] = True
else:
concept_descriptions.append(CONCEPTS_MAP[concept_name3])
# Get all ranks
ranks = [rank1]
if concept_image2 is not None:
ranks.append(rank2)
if concept_image3 is not None:
ranks.append(rank3)
concept_embeds = []
projection_matrices = []
# for the demo, we assume 1 concept image per concept
# for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
for i, concept in enumerate(concept_descriptions):
img_pil = Image.fromarray(concept_images[i]).convert("RGB")
concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
if skip_load_concept[i]: # if concept is new from user input
all_embeds_in = concept
else:
embeds_path = f"./IP_Composer/text_embeddings/{concept}"
with open(embeds_path, "rb") as f:
all_embeds_in = np.load(f)
projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
projection_matrices.append(projection_matrix)
# Create projection data structure for the composition
projections_data = [
{
"embed": embed,
"projection_matrix": proj_matrix
}
for embed, proj_matrix in zip(concept_embeds, projection_matrices)
]
# Generate modified images -
modified_images = get_modified_images_embeds_composition(
base_embed,
projections_data,
ip_model,
prompt=prompt,
scale=scale,
num_samples=1,
seed=seed,
num_inference_steps=num_inference_steps
)
return modified_images[0]
@spaces.GPU
def get_text_embeddings(concept_file):
print("generating text embeddings")
descriptions = load_descriptions(concept_file)
embeddings = generate_embeddings(descriptions, clip_model, tokenizer, device, batch_size=100)
print("text embeddings shape",embeddings.shape)
return embeddings, True
def process_and_display(
base_image,
concept_image1, concept_name1="age",
concept_image2=None, concept_name2=None,
concept_image3=None, concept_name3=None,
rank1=30, rank2=30, rank3=30,
prompt=None, scale=1.0, seed=0, num_inference_steps=50,
concpet_from_file_1 = None,
concpet_from_file_2 = None,
concpet_from_file_3 = None,
use_concpet_from_file_1 = False,
use_concpet_from_file_2 = False,
use_concpet_from_file_3 = False
):
if base_image is None:
raise gr.Error("Please upload a base image")
if concept_image1 is None:
raise gr.Error("Choose at least one concept image")
if concept_image1 is None:
raise gr.Error("Choose at least one concept type")
modified_images = process_images(
base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps,
concpet_from_file_1,
concpet_from_file_2,
concpet_from_file_3,
use_concpet_from_file_1,
use_concpet_from_file_2,
use_concpet_from_file_3
)
return modified_images
# UI CSS
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.gradio-container{
max-width: 1024px !important;
margin: 0 auto
}
"""
example = """
Emotion Description
a photo of a person feeling joyful
a photo of a person feeling sorrowful
a photo of a person feeling enraged
a photo of a person feeling astonished
a photo of a person feeling disgusted
a photo of a person feeling terrified
...
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(f"""# IP Composer πŸŒ…βœšπŸ–ŒοΈ
### compose new images with visual concepts extracted from refrence images using CLIP & IP Adapter
#### πŸ› οΈ How to Use:
1. Upload a base image
2. Upload 1–3 concept images
3. Select a **concept type** to extract from each concept image:
- Choose a **predefined concept type** from the dropdown (e.g. pattern, emotion, pose), **or**
- Upload a **file with text variations of your concept** (e.g. prompts from an LLM).
- πŸ‘‰ If you're uploading a **new concept**, don't forget to **adjust the "rank" value** under **Advanced Options** for better results.
Following the algorithm proposed in IP-Composer: Semantic Composition of Visual Concepts by Dorfman et al.
[[Project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)]
""")
concpet_from_file_1 = gr.State()
concpet_from_file_2 = gr.State()
concpet_from_file_3 = gr.State()
use_concpet_from_file_1 = gr.State()
use_concpet_from_file_2 = gr.State()
use_concpet_from_file_3 = gr.State()
with gr.Row():
with gr.Column():
base_image = gr.Image(label="Base Image (Required)", type="numpy", height=400, width=400)
with gr.Tab("Concept 1"):
with gr.Group():
concept_image1 = gr.Image(label="Concept Image 1", type="numpy", height=400, width=400)
with gr.Column():
concept_name1 = gr.Dropdown(concept_options, label="Concept 1", value=None, info="Pick concept type")
with gr.Accordion("πŸ’‘ Or use a new concept πŸ‘‡", open=False):
gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)")
gr.Markdown("2. Prefereably with > 100 variations.")
with gr.Accordion("File example for the concept 'emotions'", open=False):
gr.Markdown(example)
concept_file_1 = gr.File(label="Concept variations", file_types=["text"])
with gr.Tab("Concept 2 (Optional)"):
with gr.Group():
concept_image2 = gr.Image(label="Concept Image 2", type="numpy", height=400, width=400)
with gr.Column():
concept_name2 = gr.Dropdown(concept_options, label="Concept 2", value=None, info="Pick concept type")
with gr.Accordion("πŸ’‘ Or use a new concept πŸ‘‡", open=False):
gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)")
gr.Markdown("2. Prefereably with > 100 variations.")
with gr.Accordion("File example for the concept 'emotions'", open=False):
gr.Markdown(example)
concept_file_2 = gr.File(label="Concept variations", file_types=["text"])
with gr.Tab("Concept 3 (optional)"):
with gr.Group():
concept_image3 = gr.Image(label="Concept Image 3", type="numpy", height=400, width=400)
with gr.Column():
concept_name3 = gr.Dropdown(concept_options, label="Concept 3", value= None, info="Pick concept type")
with gr.Accordion("πŸ’‘ Or use a new concept πŸ‘‡", open=False):
gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)")
gr.Markdown("2. Prefereably with > 100 variations.")
with gr.Accordion("File example for the concept 'emotions'", open=False):
gr.Markdown(example)
concept_file_3 = gr.File(label="Concept variations", file_types=["text"])
with gr.Accordion("Advanced options", open=False):
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Num steps")
with gr.Row():
scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
seed = gr.Number(value=0, label="Seed", precision=0)
with gr.Column():
gr.Markdown("If a concept is not showing enough, try to increase the rank")
with gr.Row():
rank1 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 1")
rank2 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 2")
rank3 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 3")
with gr.Column():
output_image = gr.Image(label="Composed output", show_label=True,height=400, width=400 )
submit_btn = gr.Button("Generate")
gr.Examples(
examples,
inputs=[base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps],
outputs=[output_image],
fn=generate_examples,
cache_examples=False
)
concept_file_1.upload(
fn=get_text_embeddings,
inputs=[concept_file_1],
outputs=[concpet_from_file_1, use_concpet_from_file_1]
)
concept_file_2.upload(
fn=get_text_embeddings,
inputs=[concept_file_2],
outputs=[concpet_from_file_2, use_concpet_from_file_2]
)
concept_file_3.upload(
fn=get_text_embeddings,
inputs=[concept_file_3],
outputs=[concpet_from_file_3, use_concpet_from_file_3]
)
concept_file_1.delete(
fn=lambda x: False,
inputs=[concept_file_1],
outputs=[use_concpet_from_file_1]
)
concept_file_2.delete(
fn=lambda x: False,
inputs=[concept_file_2],
outputs=[use_concpet_from_file_2]
)
concept_file_3.delete(
fn=lambda x: False,
inputs=[concept_file_3],
outputs=[use_concpet_from_file_3]
)
submit_btn.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
).then(fn=process_and_display,
inputs=[
base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps,
concpet_from_file_1,
concpet_from_file_2,
concpet_from_file_3,
use_concpet_from_file_1,
use_concpet_from_file_2,
use_concpet_from_file_3
],
outputs=[output_image]
)
concept_name1.select(
fn= change_rank_default,
inputs=[concept_name1],
outputs=[rank1]
)
concept_name2.select(
fn= change_rank_default,
inputs=[concept_name2],
outputs=[rank2]
)
concept_name3.select(
fn= change_rank_default,
inputs=[concept_name3],
outputs=[rank3]
)
concept_image1.upload(
fn=match_image_to_concept,
inputs=[concept_image1],
outputs=[concept_name1]
)
concept_image2.upload(
fn=match_image_to_concept,
inputs=[concept_image2],
outputs=[concept_name2]
)
concept_image3.upload(
fn=match_image_to_concept,
inputs=[concept_image3],
outputs=[concept_name3]
)
if __name__ == "__main__":
demo.launch()