File size: 19,179 Bytes
c20a702
 
 
 
 
 
 
 
 
 
 
 
b857866
f41b58f
0292eb7
c20a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c9440
 
c0e7580
47154ea
 
e96f400
47154ea
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f871c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e7580
c20a702
42824a3
8bb102d
e2845d3
6de637b
e2845d3
6de637b
ce21f0a
ceefe41
f8e9a8a
 
8bb102d
 
 
 
 
 
 
bc8dd39
8bb102d
 
 
 
 
bc8dd39
8bb102d
 
 
 
42824a3
 
 
 
 
 
c6f871c
 
 
f41b58f
c20a702
 
 
 
 
 
 
f41b58f
c20a702
 
62151c8
 
 
c20a702
 
 
bc8dd39
 
43c9440
 
 
 
 
 
c20a702
 
 
 
62151c8
c20a702
 
 
 
43c9440
 
c20a702
62151c8
c20a702
 
f2e70cb
648c435
43c9440
 
 
c20a702
 
 
 
 
 
f2e70cb
648c435
43c9440
 
 
c20a702
 
 
 
f2e70cb
648c435
43c9440
 
 
c20a702
 
 
 
 
 
 
62151c8
c20a702
 
 
62151c8
 
43c9440
62151c8
 
43c9440
 
 
 
 
 
62151c8
 
c20a702
 
62151c8
c20a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039a94c
bc8dd39
c20a702
 
62151c8
c20a702
43c9440
 
747633e
43c9440
ee8f1f1
747633e
 
43c9440
 
c20a702
 
62151c8
 
 
 
bc8dd39
07c2dd5
 
 
 
 
 
c20a702
 
e6f9650
c20a702
 
e6f9650
0292eb7
 
e6f9650
c20a702
 
 
62151c8
 
 
c20a702
152624c
 
 
 
 
 
 
c20a702
 
 
 
42824a3
 
 
 
c90aa74
42824a3
 
cd99776
 
355ac45
cd99776
355ac45
cd99776
355ac45
cd99776
355ac45
cd99776
355ac45
cd99776
355ac45
cd99776
355ac45
cd99776
 
 
42824a3
 
c90aa74
 
c0e7580
e6f9650
c90aa74
 
 
e6f9650
 
 
 
c90aa74
e6f9650
42824a3
43c9440
 
 
 
 
 
c20a702
 
c6f871c
e6f9650
0fdc043
f3356f0
f045879
e6f9650
 
 
 
 
f045879
e6f9650
1a94351
e6f9650
0fdc043
f3356f0
f045879
e6f9650
 
 
 
 
f045879
e6f9650
1a94351
43c9440
e6f9650
0fdc043
f3356f0
f045879
e6f9650
 
 
 
 
f045879
e6f9650
1a94351
c091a06
42824a3
 
 
e6f9650
42824a3
 
b3e7963
c6f871c
ceefe41
e6f9650
ceefe41
e6f9650
 
 
c20a702
 
e6f9650
c091a06
c20a702
8bb102d
 
 
 
 
 
 
bc8dd39
8bb102d
 
 
 
43c9440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96f400
c20a702
42824a3
 
 
 
c20a702
 
62151c8
 
 
c20a702
43c9440
 
 
 
 
 
 
c20a702
 
 
c6f871c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20a702
c90aa74
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import os
import json
import torch
import gc
import numpy as np
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
from IP_Composer.generate_text_embeddings import load_descriptions, generate_embeddings 
import spaces
import random

device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize SDXL pipeline
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    add_watermarker=False,
)

# Initialize IP-Adapter
image_encoder_repo = 'h94/IP-Adapter'
image_encoder_subfolder = 'models/image_encoder'
ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin')
ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device)

# Initialize CLIP model
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
clip_model.to(device)
tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')


CONCEPTS_MAP={
    "age": "age_descriptions.npy",
    "animal fur": "fur_descriptions.npy",
    "dogs": "dog_descriptions.npy",
    "emotions": "emotion_descriptions.npy",
    "flowers": "flower_descriptions.npy",
    "fruit/vegtable": "fruit_vegetable_descriptions.npy",
    "outfit type": "outfit_descriptions.npy",
    "outfit pattern (including color)": "outfit_pattern_descriptions.npy",
    "patterns": "pattern_descriptions.npy",
    "patterns (including color)": "pattern_descriptions_with_colors.npy",
    "vehicle": "vehicle_descriptions.npy",
    "daytime": "times_of_day_descriptions.npy",
    "pose": "person_poses_descriptions.npy",
    "season": "season_descriptions.npy",
    "material": "material_descriptions_with_gems.npy"
}
RANKS_MAP={
    "age": 30,
    "animal fur": 80,
    "dogs": 30,
    "emotions": 30,
    "flowers": 30,
    "fruit/vegtable": 30, 
    "outfit type": 30,
    "outfit pattern (including color)": 80,
    "patterns": 80,
    "patterns (including color)": 80,
    "vehicle": 30,
    "daytime": 30,
    "pose": 30,
    "season": 30,
    "material": 80,
}
concept_options = list(CONCEPTS_MAP.keys())


examples = [
    ['./IP_Composer/assets/patterns/base.jpg', './IP_Composer/assets/patterns/pattern.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/flowers/base.png', './IP_Composer/assets/flowers/concept.png', 'flowers', None, None, None, None, 30, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/materials/base.png', './IP_Composer/assets/materials/concept.jpg', 'material', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/vehicle/base.png', './IP_Composer/assets/vehicle/concept.png', 'vehicle', None, None, None, None, 30, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/red_pattern.png', 'patterns (including color)', None, None, None, None, 100, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/emotions/joyful.png', './IP_Composer/assets/emotions/sad.png', 'emotions', './IP_Composer/assets/age/kid.png', 'age', None, None, 30, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/flowers/rose_1.jpg', './IP_Composer/assets/flowers/flowers_3.jpg', 'flowers', None, None, None, None, 30, 30, 30, None,1.0,0, 30],
]

def generate_examples(base_image, 
                      concept_image1, concept_name1,
                      concept_image2, concept_name2,
                      concept_image3, concept_name3,
                      rank1, rank2, rank3, 
                      prompt, scale, seed, num_inference_steps):
    return process_and_display(base_image, 
                      concept_image1, concept_name1,
                      concept_image2, concept_name2,
                      concept_image3, concept_name3,
                      rank1, rank2, rank3, 
                      prompt, scale, seed, num_inference_steps)



    
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def change_rank_default(concept_name):
    return RANKS_MAP.get(concept_name, 30)

@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
    """Get CLIP image embeddings for a given PIL image"""
    image = preproc(pil_image)[np.newaxis, :, :, :]
    with torch.no_grad():
        embeds = model.encode_image(image.to(dev))
    return embeds.cpu().detach().numpy()

@spaces.GPU
def process_images(
    base_image, 
    concept_image1, concept_name1,
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=10, rank2=10, rank3=10,
    prompt=None, 
    scale=1.0,
    seed=420,
    num_inference_steps=50,
    concpet_from_file_1 = None,
    concpet_from_file_2 = None,
    concpet_from_file_3 = None,
    use_concpet_from_file_1 = False,
    use_concpet_from_file_2 = False,
    use_concpet_from_file_3 = False
):
    """Process the base image and concept images to generate modified images"""
    # Process base image
    base_image_pil = Image.fromarray(base_image).convert("RGB")
    base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device)
    
    # Process concept images
    concept_images = []
    concept_descriptions = []

    skip_load_concept =[False,False, False]
    
    # for demo purposes we allow for up to 3 different concepts and corresponding concept images 
    if concept_image1 is not None:
        concept_images.append(concept_image1)
        if use_concpet_from_file_1 and concpet_from_file_1 is not None: # if concept is new from user input
            concept_descriptions.append(concpet_from_file_1)
            skip_load_concept[0] = True
        else:
            concept_descriptions.append(CONCEPTS_MAP[concept_name1])
    else:
        return None, "Please upload at least one concept image"
    
    # Add second concept (optional)
    if concept_image2 is not None:
        concept_images.append(concept_image2)
        if use_concpet_from_file_2 and concpet_from_file_2 is not None: # if concept is new from user input
            concept_descriptions.append(concpet_from_file_2)
            skip_load_concept[1] = True
        else:
            concept_descriptions.append(CONCEPTS_MAP[concept_name2])
    
    # Add third concept (optional)
    if concept_image3 is not None:
        concept_images.append(concept_image3)
        if use_concpet_from_file_3 and concpet_from_file_3 is not None: # if concept is new from user input
            concept_descriptions.append(concpet_from_file_3)
            skip_load_concept[2] = True
        else:
            concept_descriptions.append(CONCEPTS_MAP[concept_name3])
    
    # Get all ranks
    ranks = [rank1]
    if concept_image2 is not None:
        ranks.append(rank2)
    if concept_image3 is not None:
        ranks.append(rank3)
        
    
    concept_embeds = []
    projection_matrices = []
    # for the demo, we assume 1 concept image per concept
    # for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
    for i, concept in enumerate(concept_descriptions):
        img_pil = Image.fromarray(concept_images[i]).convert("RGB")
        concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
        if skip_load_concept[i]: # if concept is new from user input
            all_embeds_in = concept        
        else:
            embeds_path = f"./IP_Composer/text_embeddings/{concept}"
            with open(embeds_path, "rb") as f:
                all_embeds_in = np.load(f)
        
        projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
        projection_matrices.append(projection_matrix)
    
    
    # Create projection data structure for the composition
    projections_data = [
        {
            "embed": embed,
            "projection_matrix": proj_matrix
        }
        for embed, proj_matrix in zip(concept_embeds, projection_matrices)
    ]
    
    # Generate modified images - 
    modified_images = get_modified_images_embeds_composition(
        base_embed, 
        projections_data, 
        ip_model, 
        prompt=prompt, 
        scale=scale, 
        num_samples=1, 
        seed=seed,
        num_inference_steps=num_inference_steps
    )
    
    return modified_images[0]

@spaces.GPU
def get_text_embeddings(concept_file):
    print("generating text embeddings")
    descriptions = load_descriptions(concept_file) 
    embeddings = generate_embeddings(descriptions, clip_model, tokenizer, device, batch_size=100)
    print("text embeddings shape",embeddings.shape)
    return embeddings, True
    

def process_and_display(
    base_image, 
    concept_image1, concept_name1="age",
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=30, rank2=30, rank3=30,
    prompt=None, scale=1.0, seed=0, num_inference_steps=50,
    concpet_from_file_1 = None,
    concpet_from_file_2 = None,
    concpet_from_file_3 = None,
    use_concpet_from_file_1 = False,
    use_concpet_from_file_2 = False,
    use_concpet_from_file_3 = False
):
    if base_image is None:
        raise gr.Error("Please upload a base image")
    
    if concept_image1 is None:
        raise gr.Error("Choose at least one concept image")

    if concept_image1 is None:
        raise gr.Error("Choose at least one concept type")
    
    modified_images = process_images(
        base_image, 
        concept_image1, concept_name1,
        concept_image2, concept_name2,
        concept_image3, concept_name3,
        rank1, rank2, rank3, 
        prompt, scale, seed, num_inference_steps,
        concpet_from_file_1,
        concpet_from_file_2,
        concpet_from_file_3,
        use_concpet_from_file_1,
        use_concpet_from_file_2,
        use_concpet_from_file_3
    )
    
    return modified_images

# UI CSS
css = """
#col-container {
    margin: 0 auto;
    max-width: 800px;
}
"""
example = """
Emotion Description

a photo of a person feeling joyful

a photo of a person feeling sorrowful

a photo of a person feeling enraged

a photo of a person feeling astonished

a photo of a person feeling disgusted

a photo of a person feeling terrified

...
                        
"""
with gr.Blocks(css=css) as demo:
        gr.Markdown(f"""# IP Composer πŸŒ…βœšπŸ–ŒοΈ
### compose new images with visual concepts extracted from refrence images using CLIP & IP Adapter


#### πŸ› οΈ How to Use:                                   
1. Upload a base image  
2. Upload 1–3 concept images   
3. Select a **concept type** to extract from each concept image:  
    - Choose a **predefined concept type** from the dropdown (e.g. pattern, emotion, pose), **or**  
    - Upload a **file with text variations of your concept** (e.g. prompts from an LLM).  
        - πŸ‘‰ If you're uploading a **new concept**, don't forget to **adjust the "rank" value** under **Advanced Options** for better results.
                    
Following the algorithm proposed in IP-Composer: Semantic Composition of Visual Concepts by Dorfman et al.
[[Project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)]
        """)
        concpet_from_file_1 = gr.State()
        concpet_from_file_2 = gr.State()
        concpet_from_file_3 = gr.State()
        use_concpet_from_file_1 = gr.State()
        use_concpet_from_file_2 = gr.State()
        use_concpet_from_file_3 = gr.State()
        with gr.Row():
            with gr.Column():
                base_image = gr.Image(label="Base Image (Required)", type="numpy")
                with gr.Tab("Concept 1"):      
                    with gr.Group():
                          concept_image1 = gr.Image(label="Concept Image 1", type="numpy")
                          with gr.Row():  
                            concept_name1 = gr.Dropdown(concept_options, label="Concept 1", value=None, info="Pick concept type")
                            with gr.Accordion("πŸ’‘ Or use a new concept πŸ‘‡", open=False):
                                gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)")
                                gr.Markdown("2. Prefereably with > 100 variations.")
                                with gr.Accordion("File example for the concept 'emotions'", open=False):
                                    gr.Markdown(example)
                                concept_file_1 = gr.File(label="Concept variations", file_types=["text"])
                                                    
                with gr.Tab("Concept 2 (Optional)"):            
                    with gr.Group():    
                          concept_image2 = gr.Image(label="Concept Image 2", type="numpy")
                          with gr.Row():
                              concept_name2 = gr.Dropdown(concept_options, label="Concept 2", value=None, info="Pick concept type")
                              with gr.Accordion("πŸ’‘ Or use a new concept πŸ‘‡", open=False):
                                    gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)")
                                    gr.Markdown("2. Prefereably with > 100 variations.")
                                    with gr.Accordion("File example for the concept 'emotions'", open=False):
                                        gr.Markdown(example)
                                    concept_file_2 = gr.File(label="Concept variations", file_types=["text"])
                          
                
                with gr.Tab("Concept 3 (optional)"):
                    with gr.Group(): 
                          concept_image3 = gr.Image(label="Concept Image 3", type="numpy")
                          with gr.Row():
                            concept_name3 = gr.Dropdown(concept_options, label="Concept 3", value= None, info="Pick concept type")
                            with gr.Accordion("πŸ’‘ Or use a new concept πŸ‘‡", open=False):
                                gr.Markdown("1. Upload a file with text variations of your concept (e.g. ask an LLM)")
                                gr.Markdown("2. Prefereably with > 100 variations.")
                                with gr.Accordion("File example for the concept 'emotions'", open=False):
                                    gr.Markdown(example)
                                concept_file_3 = gr.File(label="Concept variations", file_types=["text"])
                          
               
            
                with gr.Accordion("Advanced options", open=False):
                    prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
                    num_inference_steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Num steps")
                    with gr.Row():
                        scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
                        randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
                        seed = gr.Number(value=0, label="Seed", precision=0)
                    with gr.Column():
                        gr.Markdown("If a concept is not showing enough, try to increase the rank")
                        with gr.Row():
                            rank1 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 1")
                            rank2 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 2")
                            rank3 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="Rank concept 3")
            
            with gr.Column():
                output_image = gr.Image(label="Composed output", show_label=True)
                submit_btn = gr.Button("Generate")
        
        gr.Examples(
        examples,
        inputs=[base_image, 
                concept_image1, concept_name1,
                concept_image2, concept_name2,
                concept_image3, concept_name3,
                rank1, rank2, rank3, 
                prompt, scale, seed, num_inference_steps],
        outputs=[output_image],
        fn=generate_examples,
        cache_examples=False
        )

        concept_file_1.upload(
            fn=get_text_embeddings,
            inputs=[concept_file_1],
            outputs=[concpet_from_file_1, use_concpet_from_file_1]
        )
        concept_file_2.upload(
            fn=get_text_embeddings,
            inputs=[concept_file_2],
            outputs=[concpet_from_file_2, use_concpet_from_file_2]
        )
        concept_file_3.upload(
            fn=get_text_embeddings,
            inputs=[concept_file_3],
            outputs=[concpet_from_file_3, use_concpet_from_file_3]
        )

        concept_file_1.delete(
            fn=lambda x: False,
            inputs=[concept_file_1],
            outputs=[use_concpet_from_file_1]
        )
        concept_file_2.delete(
            fn=lambda x: False,
            inputs=[concept_file_2],
            outputs=[use_concpet_from_file_2]
        )
        concept_file_3.delete(
            fn=lambda x: False,
            inputs=[concept_file_3],
            outputs=[use_concpet_from_file_3]
        )
        
        submit_btn.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
        ).then(fn=process_and_display,
            inputs=[
                base_image, 
                concept_image1, concept_name1,
                concept_image2, concept_name2,
                concept_image3, concept_name3,
                rank1, rank2, rank3, 
                prompt, scale, seed, num_inference_steps,
                concpet_from_file_1,
                concpet_from_file_2,
                concpet_from_file_3,
                use_concpet_from_file_1,
                use_concpet_from_file_2,
                use_concpet_from_file_3
            ],
            outputs=[output_image]
        )

        concept_name1.select(
            fn= change_rank_default,
            inputs=[concept_name1],
            outputs=[rank1]
        )
        concept_name2.select(
            fn= change_rank_default,
            inputs=[concept_name2],
            outputs=[rank2]
        )
        concept_name3.select(
            fn= change_rank_default,
            inputs=[concept_name3],
            outputs=[rank3]
        )

if __name__ == "__main__":
    demo.launch()