File size: 8,220 Bytes
c20a702
 
 
 
 
 
 
 
 
 
 
 
f41b58f
c20a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e7580
 
 
 
 
c20a702
f41b58f
c20a702
 
 
 
 
 
 
f41b58f
c20a702
 
62151c8
 
 
c20a702
 
 
 
 
 
 
 
62151c8
c20a702
 
 
 
 
62151c8
c20a702
 
c0e7580
c20a702
 
 
 
 
 
c0e7580
c20a702
 
 
 
c0e7580
c20a702
 
 
 
 
 
 
62151c8
c20a702
 
 
62151c8
 
 
 
 
 
 
 
 
 
c20a702
 
62151c8
c20a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62151c8
c20a702
 
 
62151c8
 
 
 
c20a702
 
 
 
 
 
 
 
 
 
 
62151c8
 
 
c20a702
 
 
 
 
 
 
 
 
 
c0e7580
 
c20a702
 
 
 
 
 
 
 
 
 
 
62151c8
c0e7580
62151c8
c20a702
 
 
 
62151c8
c0e7580
62151c8
c20a702
 
 
 
62151c8
c0e7580
62151c8
c20a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62151c8
 
 
c20a702
 
 
 
 
 
 
 
29b1411
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import json
import torch
import gc
import numpy as np
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
import spaces

device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize SDXL pipeline
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    add_watermarker=False,
)

# Initialize IP-Adapter
image_encoder_repo = 'h94/IP-Adapter'
image_encoder_subfolder = 'models/image_encoder'
ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin')
ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device)

# Initialize CLIP model
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
clip_model.to(device)


CONCEPTS_MAP = {'age':'age','animal fur':'animal_fur', 'deterioration': 'deterioration', 'dogs':'dog', 'emotion':'emotion', 'floor':'floor', 'flowers':'flower', 'fruit/vegtebale':'fruit_vegtebale', 'fur':'fur', 'furniture':'furniture', 'lens':'lens', 'outfit':'outfit', 'outfit color':'outfit_color', 'pattern':'pattern', 'texture':'texture', 'times of day':'times_of_day', 'tree':'tree', 'vehicle':'vehicle', 'vehicle color':'vehicle_color'}

concept_options = list(CONCEPTS_MAP.keys())

@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
    """Get CLIP image embeddings for a given PIL image"""
    image = preproc(pil_image)[np.newaxis, :, :, :]
    with torch.no_grad():
        embeds = model.encode_image(image.to(dev))
    return embeds.cpu().detach().numpy()

@spaces.GPU
def process_images(
    base_image, 
    concept_image1, concept_name1,
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=10, rank2=10, rank3=10,
    prompt=None, 
    scale=1.0,
    seed=420
):
    """Process the base image and concept images to generate modified images"""
    # Process base image
    base_image_pil = Image.fromarray(base_image).convert("RGB")
    base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device)
    
    # Process concept images
    concept_images = []
    concept_descriptions = []
    
    # for demo purposes we allow for up to 3 different concepts and corresponding concept images 
    if concept_image1 is not None:
        concept_images.append(concept_image1)
        concept_descriptions.append(CONCEPTS_MAP[concept_name1])
    else:
        return None, "Please upload at least one concept image"
    
    # Add second concept (optional)
    if concept_image2 is not None:
        concept_images.append(concept_image2)
        concept_descriptions.append(CONCEPTS_MAP[concept_name2])
    
    # Add third concept (optional)
    if concept_image3 is not None:
        concept_images.append(concept_image3)
        concept_descriptions.append(CONCEPTS_MAP[concept_name3])
    
    # Get all ranks
    ranks = [rank1]
    if concept_image2 is not None:
        ranks.append(rank2)
    if concept_image3 is not None:
        ranks.append(rank3)
        
    
    concept_embeds = []
    projection_matrices = []
    # for the demo, we assume 1 concept image per concept
    # for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
    for i, concept_name in enumerate(concept_descriptions):
        img_pil = Image.fromarray(concept_images[i]).convert("RGB")
        concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
        embeds_path = f"./IP_Composer/text_embeddings/{concept_name}_descriptions.npy"
        with open(embeds_path, "rb") as f:
            all_embeds_in = np.load(f)
        
        projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
        projection_matrices.append(projection_matrix)
    
    
    # Create projection data structure for the composition
    projections_data = [
        {
            "embed": embed,
            "projection_matrix": proj_matrix
        }
        for embed, proj_matrix in zip(concept_embeds, projection_matrices)
    ]
    
    # Generate modified images - 
    modified_images = get_modified_images_embeds_composition(
        base_embed, 
        projections_data, 
        ip_model, 
        prompt=prompt, 
        scale=scale, 
        num_samples=1, 
        seed=seed
    )
    
    return modified_images[0]

def process_and_display(
    base_image, 
    concept_image1, concept_name1="age",
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=30, rank2=30, rank3=30,
    prompt=None, scale=1.0, seed=420
):
    """Wrapper for process_images that handles UI updates"""
    if base_image is None:
        return None, "Please upload a base image"
    
    if concept_image1 is None:
        return None, "Please upload at least one concept image"
    
    modified_images = process_images(
        base_image, 
        concept_image1, concept_name1,
        concept_image2, concept_name2,
        concept_image3, concept_name3,
        rank1, rank2, rank3, 
        prompt, scale, seed
    )
    
    # # Clean up memory
    # torch.cuda.empty_cache()
    # gc.collect()
    
    return modified_images



with gr.Blocks(title="Image Concept Composition") as demo:
        gr.Markdown("# IP Composer")
        gr.Markdown("")
        
        with gr.Row():
            with gr.Column():
                base_image = gr.Image(label="Base Image (Required)", type="numpy")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        concept_image1 = gr.Image(label="Concept Image 1 (Required)", type="numpy")
                    with gr.Row():
                        concept_name1 = gr.Dropdown(concept_options, label="concept 1", value=None, info="concept type")
                        rank1 = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Rank 1")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        concept_image2 = gr.Image(label="Concept Image 2 (Optional)", type="numpy")
                    with gr.Row():
                        concept_name2 = gr.Dropdown(concept_options, label="concept 2", value=None, info="concept type")
                        rank2 = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Rank 2")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        concept_image3 = gr.Image(label="Concept Image 3 (Optional)", type="numpy")
                    with gr.Row():
                        concept_name3 = gr.Dropdown(concept_options, label="concept 3", value= None, info="concept type")
                        rank3 = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Rank 3")
                
                prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
                
                with gr.Row():
                    scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
                    seed = gr.Number(value=420, label="Seed", precision=0)
                
                submit_btn = gr.Button("Generate")
            
            with gr.Column():
                output_image = gr.Image(label="composed output", show_label=True)
        
        submit_btn.click(
            fn=process_and_display,
            inputs=[
                base_image, 
                concept_image1, concept_name1,
                concept_image2, concept_name2,
                concept_image3, concept_name3,
                rank1, rank2, rank3, 
                prompt, scale, seed
            ],
            outputs=[output_image]
        )
    
    

demo.launch()