Spaces:
Running
Running
import asyncio | |
from websockets import connect, Data, ClientConnection | |
import json | |
import numpy as np | |
import base64 | |
import soundfile as sf | |
import io | |
from pydub import AudioSegment | |
import os | |
# Load OpenAI API key | |
from dotenv import load_dotenv | |
load_dotenv() | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
if not OPENAI_API_KEY: | |
raise ValueError("OPENAI_API_KEY must be set in environment") | |
WEBSOCKET_URI = "wss://api.openai.com/v1/realtime?intent=transcription" | |
WEBSOCKET_HEADERS = { | |
"Authorization": f"Bearer {OPENAI_API_KEY}", | |
"OpenAI-Beta": "realtime=v1" | |
} | |
# Shared client registry | |
connections = {} | |
class WebSocketClient: | |
def __init__(self, uri: str, headers: dict, client_id: str): | |
self.uri = uri | |
self.headers = headers | |
self.websocket: ClientConnection = None | |
self.queue = asyncio.Queue(maxsize=10) | |
self.loop = None | |
self.client_id = client_id | |
self.transcript = "" | |
async def connect(self): | |
try: | |
self.websocket = await connect(self.uri, additional_headers=self.headers) | |
print(f"β Connected to OpenAI WebSocket") | |
# Send transcription session settings | |
with open("openai_transcription_settings.json", "r") as f: | |
settings = f.read() | |
await self.websocket.send(settings) | |
await asyncio.gather(self.receive_messages(), self.send_audio_chunks()) | |
except Exception as e: | |
print(f"β WebSocket Error: {e}") | |
def run(self): | |
self.loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(self.loop) | |
self.loop.run_until_complete(self.connect()) | |
def process_websocket_message(self, message: Data): | |
try: | |
message_object = json.loads(message) | |
if message_object["type"] == "conversation.item.input_audio_transcription.delta": | |
delta = message_object["delta"] | |
self.transcript += delta | |
elif message_object["type"] == "conversation.item.input_audio_transcription.completed": | |
self.transcript += ' ' if self.transcript and self.transcript[-1] != ' ' else '' | |
except Exception as e: | |
print(f"β οΈ Error processing message: {e}") | |
async def send_audio_chunks(self): | |
while True: | |
sample_rate, audio_array = await self.queue.get() | |
if self.websocket: | |
if audio_array.ndim > 1: | |
audio_array = audio_array.mean(axis=1) | |
audio_array = audio_array.astype(np.float32) | |
audio_array /= np.max(np.abs(audio_array)) if np.max(np.abs(audio_array)) > 0 else 1.0 | |
int_audio = (audio_array * 32767).astype(np.int16) | |
buffer = io.BytesIO() | |
sf.write(buffer, int_audio, sample_rate, format="WAV", subtype="PCM_16") | |
buffer.seek(0) | |
audio_segment = AudioSegment.from_file(buffer, format="wav") | |
resampled = audio_segment.set_frame_rate(24000) | |
out_buf = io.BytesIO() | |
resampled.export(out_buf, format="wav") | |
out_buf.seek(0) | |
b64_audio = base64.b64encode(out_buf.read()).decode("utf-8") | |
await self.websocket.send(json.dumps({ | |
"type": "input_audio_buffer.append", | |
"audio": b64_audio | |
})) | |
async def receive_messages(self): | |
async for message in self.websocket: | |
self.process_websocket_message(message) | |
def enqueue_audio_chunk(self, sample_rate: int, chunk_array: np.ndarray): | |
if not self.queue.full(): | |
asyncio.run_coroutine_threadsafe(self.queue.put((sample_rate, chunk_array)), self.loop) | |