Spaces:
Sleeping
Sleeping
Create Tabs.py
Browse files
Tabs.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def get_sentiment(text):
|
6 |
+
sentiment_pipeline=pipeline('sentiment-analysis')
|
7 |
+
result=sentiment_pipeline(text)
|
8 |
+
output = gr.Textbox(label="Output Box")
|
9 |
+
|
10 |
+
return result[0]['label'],result[0]['score']
|
11 |
+
|
12 |
+
def summraztion(text):
|
13 |
+
summary_pipe = pipeline('summarization',model="cnicu/t5-small-booksum")
|
14 |
+
result=summary_pipe(text)
|
15 |
+
output = gr.Textbox(label="Output Box")
|
16 |
+
return result[0]['summary_text']
|
17 |
+
|
18 |
+
def chat_bot(text,histroy):
|
19 |
+
chat_pip=pipeline('text-generation')
|
20 |
+
mes=chat_pip(text)
|
21 |
+
return mes[0]['generated_text']
|
22 |
+
|
23 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
24 |
+
|
25 |
+
def transcribe(audio):
|
26 |
+
sr, y = audio
|
27 |
+
y = y.astype(np.float32)
|
28 |
+
y /= np.max(np.abs(y))
|
29 |
+
|
30 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
31 |
+
|
32 |
+
Audio = gr.Interface(
|
33 |
+
transcribe,
|
34 |
+
gr.Audio(sources=["microphone"]),
|
35 |
+
"text",
|
36 |
+
)
|
37 |
+
|
38 |
+
hello_world = gr.Interface(fn=get_sentiment , inputs=gr.Textbox(label="Enter the review ") , outputs=[gr.Textbox(label="sentiment") , gr.Textbox(label="Score")],description='sentiment-analysis')
|
39 |
+
summraztion = gr.Interface(fn=summraztion , inputs=gr.Textbox(label="Enter the text ") , outputs=gr.Textbox(label="summraztion") ,description='summraztion')
|
40 |
+
chatBot=gr.ChatInterface(chat_bot)
|
41 |
+
|
42 |
+
|
43 |
+
gr.TabbedInterface([hello_world, summraztion,chatBot,Audio], ["sentiment-analysis", "summraztion","chatBot",'Audio']).lunch(debug=True)
|