File size: 9,921 Bytes
e08bb94
f4e02bd
9f7372f
c9a1e1c
71f7331
1d4293f
71f7331
 
 
 
06e4d33
71f7331
f4e02bd
c9a1e1c
f4e02bd
aaca362
c9a1e1c
 
 
f4e02bd
 
c9a1e1c
f4e02bd
69d628b
71f7331
 
1d4293f
71f7331
 
 
 
 
 
 
aaca362
71f7331
 
 
674fa25
71f7331
1d4293f
ab4297c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61dc46d
1d4293f
ab4297c
f4e02bd
 
 
71f7331
 
 
1d4293f
f4e02bd
0ef453d
b07c027
 
0ef453d
 
 
 
 
f4e02bd
ab4297c
c9a1e1c
 
f4e02bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead1aa9
71f7331
ead1aa9
f4e02bd
71f7331
61dc46d
fceb263
 
61dc46d
 
 
f4e02bd
2262b9a
 
 
 
 
06e4d33
 
 
 
 
2262b9a
06e4d33
 
 
 
 
 
 
 
 
f4e02bd
06e4d33
 
 
 
 
 
 
2262b9a
06e4d33
 
 
 
 
 
61dc46d
 
 
f4e02bd
 
 
 
69d628b
71f7331
f4e02bd
 
 
 
71f7331
aaca362
71f7331
c9a1e1c
 
 
 
 
9f7372f
c9a1e1c
71f7331
c9a1e1c
f4e02bd
69d628b
c9a1e1c
 
 
71f7331
aaca362
c9a1e1c
aaca362
71f7331
560576f
f4e02bd
c9a1e1c
aaca362
71f7331
f4e02bd
560576f
71f7331
f4e02bd
c9a1e1c
69d628b
71f7331
 
 
 
2c7a685
71f7331
c9a1e1c
71f7331
c9a1e1c
ff04599
c9a1e1c
f4e02bd
 
 
 
 
 
 
 
 
 
71f7331
25d8920
f4e02bd
aaca362
f4e02bd
aaca362
 
 
f4e02bd
aaca362
71f7331
aaca362
f4e02bd
aaca362
 
 
 
 
f4e02bd
06e4d33
f4e02bd
 
 
06e4d33
f4e02bd
 
 
25d8920
f4e02bd
ab4297c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f7331
aaca362
 
f4e02bd
ab4297c
f4e02bd
9f7372f
 
61dc46d
 
06e4d33
61dc46d
 
 
 
 
 
 
 
 
 
 
 
 
06e4d33
 
f4e02bd
c62387e
06e4d33
 
f4e02bd
 
 
 
 
 
 
63408d7
 
f4e02bd
63408d7
 
 
f4e02bd
63408d7
 
25d8920
f4e02bd
128e696
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import spaces

import gradio as gr
import numpy as np
import os
import random
import json
from PIL import Image
import torch
from torchvision import transforms
import zipfile

from diffusers import FluxFillPipeline, AutoencoderKL
from PIL import Image
# from samgeo.text_sam import LangSAM

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# sam = LangSAM(model_type="sam2-hiera-large").to(device)

pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")

with open("lora_models.json", "r") as f:
    lora_models = json.load(f)

def download_model(model_name, model_path):
    print(f"Downloading model: {model_name} from {model_path}")
    try:
        pipe.load_lora_weights(model_path)
        print(f"Successfully downloaded model: {model_name}")
    except Exception as e:
        print(f"Failed to download model: {model_name}. Error: {e}")

# Iterate through the models and download each one
for model_name, model_path in lora_models.items():
    download_model(model_name, model_path)

lora_models["None"] = None

# def calculate_optimal_dimensions(image: Image.Image):
#     # Extract the original dimensions
#     original_width, original_height = image.size

#     # Set constants
#     MIN_ASPECT_RATIO = 9 / 16
#     MAX_ASPECT_RATIO = 16 / 9
#     FIXED_DIMENSION = 1024

#     # Calculate the aspect ratio of the original image
#     original_aspect_ratio = original_width / original_height

#     # Determine which dimension to fix
#     if original_aspect_ratio > 1:  # Wider than tall
#         width = FIXED_DIMENSION
#         height = round(FIXED_DIMENSION / original_aspect_ratio)
#     else:  # Taller than wide
#         height = FIXED_DIMENSION
#         width = round(FIXED_DIMENSION * original_aspect_ratio)

#     # Ensure dimensions are multiples of 8
#     width = (width // 8) * 8
#     height = (height // 8) * 8

#     # Enforce aspect ratio limits
#     calculated_aspect_ratio = width / height
#     if calculated_aspect_ratio > MAX_ASPECT_RATIO:
#         width = (height * MAX_ASPECT_RATIO // 8) * 8
#     elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
#         height = (width / MIN_ASPECT_RATIO // 8) * 8

#     # Ensure width and height remain above the minimum dimensions
#     width = max(width, 576) if width == FIXED_DIMENSION else width
#     height = max(height, 576) if height == FIXED_DIMENSION else height

#     return width, height

@spaces.GPU(durations=300)
def infer(edit_images, prompt, width, height, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    # pipe.enable_xformers_memory_efficient_attention()
    gr.Info("Infering")

    if lora_model != "None":
        pipe.load_lora_weights(lora_models[lora_model])
        pipe.enable_lora()

    gr.Info("starting checks")

    image = edit_images["background"]
    mask = edit_images["layers"][0]

    if not image:
        gr.Info("Please upload an image.")
        return None, None


    # width, height = calculate_optimal_dimensions(image)
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # controlImage = processor(image)
    gr.Info("generating image")
    image = pipe(
        # mask_image_latent=vae.encode(controlImage),
        prompt=prompt,
        prompt_2=prompt,
        image=image,
        mask_image=mask,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        # strength=strength,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator(device='cuda').manual_seed(seed),
        # generator=torch.Generator().manual_seed(seed),
        # lora_scale=0.75 // not supported in this version
    ).images[0]

    output_image_jpg = image.convert("RGB")
    output_image_jpg.save("output.jpg", "JPEG")

    return output_image_jpg, seed
    # return image, seed

def download_image(image):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    image.save("output.png", "PNG")
    return "output.png"

def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps):
    image = edit_image["background"]
    mask = edit_image["layers"][0]

    if isinstance(result, np.ndarray):
        result = Image.fromarray(result)
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    if isinstance(mask, np.ndarray):
        mask = Image.fromarray(mask)

    result.save("saved_result.png", "PNG")
    image.save("saved_image.png", "PNG")
    mask.save("saved_mask.png", "PNG")

    details = {
        "prompt": prompt,
        "lora_model": lora_model,
        "strength": strength,
        "seed": seed,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps
    }

    with open("details.json", "w") as f:
        json.dump(details, f)

    # Create a ZIP file
    with zipfile.ZipFile("output.zip", "w") as zipf:
        zipf.write("saved_result.png")
        zipf.write("saved_image.png")
        zipf.write("saved_mask.png")
        zipf.write("details.json")

    return "output.zip"

def set_image_as_inpaint(image):
    return image

# def generate_mask(image, click_x, click_y):
#     text_prompt = "face"
#     mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)
#     return mask

examples = [
    "photography of a young woman,  accent lighting,  (front view:1.4),  "
    # "a tiny astronaut hatching from an egg on the moon",
    # "a cat holding a sign that says hello world",
    # "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 1000px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
        """)
        with gr.Row():
            with gr.Column():
                edit_image = gr.ImageEditor(
                    label='Upload and draw mask for inpainting',
                    type='pil',
                    sources=["upload", "webcam"],
                    image_mode='RGB',
                    layers=False,
                    brush=gr.Brush(colors=["#FFFFFF"]),
                    # height=600
                )
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=2,
                    placeholder="Enter your prompt",
                    container=False,
                )

                lora_model = gr.Dropdown(
                    label="Select LoRA Model",
                    choices=list(lora_models.keys()),
                    value="None",
                )

                run_button = gr.Button("Run")

            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=30,
                    step=0.5,
                    value=50,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

            with gr.Row():

                strength = gr.Slider(
                    label="Strength",
                    minimum=0,
                    maximum=1,
                    step=0.01,
                    value=0.85,
                )

            with gr.Row():

                width = gr.Slider(
                    label="width",
                    minimum=512,
                    maximum=3072,
                    step=1,
                    value=1024,
                )

                height = gr.Slider(
                    label="height",
                    minimum=512,
                    maximum=3072,
                    step=1,
                    value=1024,
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [edit_image, prompt, width, height, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

    download_button = gr.Button("Download Image as PNG")
    set_inpaint_button = gr.Button("Set Image as Inpaint")
    save_button = gr.Button("Save Details")

    download_button.click(
            fn=download_image,
            inputs=[result],
            outputs=gr.File(label="Download Image")
        )

    set_inpaint_button.click(
            fn=set_image_as_inpaint,
            inputs=[result],
            outputs=[edit_image]
    )

    save_button.click(
            fn=save_details,
            inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps],
            outputs=gr.File(label="Download/Save Status")
    )

    # edit_image.select(
    #     fn=generate_mask,
    #     inputs=[edit_image, gr.Number(), gr.Number()],
    #     outputs=[edit_image]
    # )

# demo.launch()
PASSWORD = os.getenv("GRADIO_PASSWORD")
USERNAME = os.getenv("GRADIO_USERNAME")
# Create an authentication object
def authenticate(username, password):
    if username == USERNAME and password == PASSWORD:
        return True

    else:
        return False
# Launch the app with authentication

demo.launch(share=True, debug=True, auth=authenticate)