Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,921 Bytes
e08bb94 f4e02bd 9f7372f c9a1e1c 71f7331 1d4293f 71f7331 06e4d33 71f7331 f4e02bd c9a1e1c f4e02bd aaca362 c9a1e1c f4e02bd c9a1e1c f4e02bd 69d628b 71f7331 1d4293f 71f7331 aaca362 71f7331 674fa25 71f7331 1d4293f ab4297c 61dc46d 1d4293f ab4297c f4e02bd 71f7331 1d4293f f4e02bd 0ef453d b07c027 0ef453d f4e02bd ab4297c c9a1e1c f4e02bd ead1aa9 71f7331 ead1aa9 f4e02bd 71f7331 61dc46d fceb263 61dc46d f4e02bd 2262b9a 06e4d33 2262b9a 06e4d33 f4e02bd 06e4d33 2262b9a 06e4d33 61dc46d f4e02bd 69d628b 71f7331 f4e02bd 71f7331 aaca362 71f7331 c9a1e1c 9f7372f c9a1e1c 71f7331 c9a1e1c f4e02bd 69d628b c9a1e1c 71f7331 aaca362 c9a1e1c aaca362 71f7331 560576f f4e02bd c9a1e1c aaca362 71f7331 f4e02bd 560576f 71f7331 f4e02bd c9a1e1c 69d628b 71f7331 2c7a685 71f7331 c9a1e1c 71f7331 c9a1e1c ff04599 c9a1e1c f4e02bd 71f7331 25d8920 f4e02bd aaca362 f4e02bd aaca362 f4e02bd aaca362 71f7331 aaca362 f4e02bd aaca362 f4e02bd 06e4d33 f4e02bd 06e4d33 f4e02bd 25d8920 f4e02bd ab4297c 71f7331 aaca362 f4e02bd ab4297c f4e02bd 9f7372f 61dc46d 06e4d33 61dc46d 06e4d33 f4e02bd c62387e 06e4d33 f4e02bd 63408d7 f4e02bd 63408d7 f4e02bd 63408d7 25d8920 f4e02bd 128e696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import spaces
import gradio as gr
import numpy as np
import os
import random
import json
from PIL import Image
import torch
from torchvision import transforms
import zipfile
from diffusers import FluxFillPipeline, AutoencoderKL
from PIL import Image
# from samgeo.text_sam import LangSAM
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# sam = LangSAM(model_type="sam2-hiera-large").to(device)
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
with open("lora_models.json", "r") as f:
lora_models = json.load(f)
def download_model(model_name, model_path):
print(f"Downloading model: {model_name} from {model_path}")
try:
pipe.load_lora_weights(model_path)
print(f"Successfully downloaded model: {model_name}")
except Exception as e:
print(f"Failed to download model: {model_name}. Error: {e}")
# Iterate through the models and download each one
for model_name, model_path in lora_models.items():
download_model(model_name, model_path)
lora_models["None"] = None
# def calculate_optimal_dimensions(image: Image.Image):
# # Extract the original dimensions
# original_width, original_height = image.size
# # Set constants
# MIN_ASPECT_RATIO = 9 / 16
# MAX_ASPECT_RATIO = 16 / 9
# FIXED_DIMENSION = 1024
# # Calculate the aspect ratio of the original image
# original_aspect_ratio = original_width / original_height
# # Determine which dimension to fix
# if original_aspect_ratio > 1: # Wider than tall
# width = FIXED_DIMENSION
# height = round(FIXED_DIMENSION / original_aspect_ratio)
# else: # Taller than wide
# height = FIXED_DIMENSION
# width = round(FIXED_DIMENSION * original_aspect_ratio)
# # Ensure dimensions are multiples of 8
# width = (width // 8) * 8
# height = (height // 8) * 8
# # Enforce aspect ratio limits
# calculated_aspect_ratio = width / height
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
# width = (height * MAX_ASPECT_RATIO // 8) * 8
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
# height = (width / MIN_ASPECT_RATIO // 8) * 8
# # Ensure width and height remain above the minimum dimensions
# width = max(width, 576) if width == FIXED_DIMENSION else width
# height = max(height, 576) if height == FIXED_DIMENSION else height
# return width, height
@spaces.GPU(durations=300)
def infer(edit_images, prompt, width, height, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# pipe.enable_xformers_memory_efficient_attention()
gr.Info("Infering")
if lora_model != "None":
pipe.load_lora_weights(lora_models[lora_model])
pipe.enable_lora()
gr.Info("starting checks")
image = edit_images["background"]
mask = edit_images["layers"][0]
if not image:
gr.Info("Please upload an image.")
return None, None
# width, height = calculate_optimal_dimensions(image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# controlImage = processor(image)
gr.Info("generating image")
image = pipe(
# mask_image_latent=vae.encode(controlImage),
prompt=prompt,
prompt_2=prompt,
image=image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
# strength=strength,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
# generator=torch.Generator().manual_seed(seed),
# lora_scale=0.75 // not supported in this version
).images[0]
output_image_jpg = image.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
# return image, seed
def download_image(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image.save("output.png", "PNG")
return "output.png"
def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps):
image = edit_image["background"]
mask = edit_image["layers"][0]
if isinstance(result, np.ndarray):
result = Image.fromarray(result)
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if isinstance(mask, np.ndarray):
mask = Image.fromarray(mask)
result.save("saved_result.png", "PNG")
image.save("saved_image.png", "PNG")
mask.save("saved_mask.png", "PNG")
details = {
"prompt": prompt,
"lora_model": lora_model,
"strength": strength,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps
}
with open("details.json", "w") as f:
json.dump(details, f)
# Create a ZIP file
with zipfile.ZipFile("output.zip", "w") as zipf:
zipf.write("saved_result.png")
zipf.write("saved_image.png")
zipf.write("saved_mask.png")
zipf.write("details.json")
return "output.zip"
def set_image_as_inpaint(image):
return image
# def generate_mask(image, click_x, click_y):
# text_prompt = "face"
# mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)
# return mask
examples = [
"photography of a young woman, accent lighting, (front view:1.4), "
# "a tiny astronaut hatching from an egg on the moon",
# "a cat holding a sign that says hello world",
# "an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"]),
# height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
lora_model = gr.Dropdown(
label="Select LoRA Model",
choices=list(lora_models.keys()),
value="None",
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
with gr.Row():
width = gr.Slider(
label="width",
minimum=512,
maximum=3072,
step=1,
value=1024,
)
height = gr.Slider(
label="height",
minimum=512,
maximum=3072,
step=1,
value=1024,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [edit_image, prompt, width, height, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
download_button = gr.Button("Download Image as PNG")
set_inpaint_button = gr.Button("Set Image as Inpaint")
save_button = gr.Button("Save Details")
download_button.click(
fn=download_image,
inputs=[result],
outputs=gr.File(label="Download Image")
)
set_inpaint_button.click(
fn=set_image_as_inpaint,
inputs=[result],
outputs=[edit_image]
)
save_button.click(
fn=save_details,
inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps],
outputs=gr.File(label="Download/Save Status")
)
# edit_image.select(
# fn=generate_mask,
# inputs=[edit_image, gr.Number(), gr.Number()],
# outputs=[edit_image]
# )
# demo.launch()
PASSWORD = os.getenv("GRADIO_PASSWORD")
USERNAME = os.getenv("GRADIO_USERNAME")
# Create an authentication object
def authenticate(username, password):
if username == USERNAME and password == PASSWORD:
return True
else:
return False
# Launch the app with authentication
demo.launch(share=True, debug=True, auth=authenticate)
|