Spaces:
Sleeping
Sleeping
File size: 10,836 Bytes
561c629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import math
from math import prod
import torch
import torch.nn as nn
import torch.nn.functional as F
from architecture.grl_common.ops import (
calculate_mask,
get_relative_coords_table,
get_relative_position_index,
window_partition,
window_reverse,
)
from architecture.grl_common.swin_v1_block import Mlp
from timm.models.layers import DropPath, to_2tuple
class WindowAttentionV2(nn.Module):
r"""Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
"""
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=True,
attn_drop=0.0,
proj_drop=0.0,
pretrained_window_size=[0, 0],
use_pe=True,
):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.use_pe = use_pe
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
)
if self.use_pe:
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(
nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False),
)
table = get_relative_coords_table(window_size, pretrained_window_size)
index = get_relative_position_index(window_size)
self.register_buffer("relative_coords_table", table)
self.register_buffer("relative_position_index", index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
# self.qkv = nn.Linear(dim, dim * 3, bias=False)
# if qkv_bias:
# self.q_bias = nn.Parameter(torch.zeros(dim))
# self.v_bias = nn.Parameter(torch.zeros(dim))
# else:
# self.q_bias = None
# self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
# qkv projection
# qkv_bias = None
# if self.q_bias is not None:
# qkv_bias = torch.cat(
# (
# self.q_bias,
# torch.zeros_like(self.v_bias, requires_grad=False),
# self.v_bias,
# )
# )
# qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = self.qkv(x)
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# cosine attention map
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp()
attn = attn * logit_scale
# positional encoding
if self.use_pe:
bias_table = self.cpb_mlp(self.relative_coords_table)
bias_table = bias_table.view(-1, self.num_heads)
win_dim = prod(self.window_size)
bias = bias_table[self.relative_position_index.view(-1)]
bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous()
# nH, Wh*Ww, Wh*Ww
bias = 16 * torch.sigmoid(bias)
attn = attn + bias.unsqueeze(0)
# shift attention mask
if mask is not None:
nW = mask.shape[0]
mask = mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask
attn = attn.view(-1, self.num_heads, N, N)
# attention
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
# output projection
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return (
f"dim={self.dim}, window_size={self.window_size}, "
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}"
)
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class WindowAttentionWrapperV2(WindowAttentionV2):
def __init__(self, shift_size, input_resolution, **kwargs):
super(WindowAttentionWrapperV2, self).__init__(**kwargs)
self.shift_size = shift_size
self.input_resolution = input_resolution
if self.shift_size > 0:
attn_mask = calculate_mask(input_resolution, self.window_size, shift_size)
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x, x_size):
H, W = x_size
B, L, C = x.shape
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
# partition windows
x = window_partition(x, self.window_size) # nW*B, wh, ww, C
x = x.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C
# W-MSA/SW-MSA
if self.input_resolution == x_size:
attn_mask = self.attn_mask
else:
attn_mask = calculate_mask(x_size, self.window_size, self.shift_size)
attn_mask = attn_mask.to(x.device)
# attention
x = super(WindowAttentionWrapperV2, self).forward(x, mask=attn_mask)
# nW*B, wh*ww, C
# merge windows
x = x.view(-1, *self.window_size, C)
x = window_reverse(x, self.window_size, x_size) # B, H, W, C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
x = x.view(B, H * W, C)
return x
class SwinTransformerBlockV2(nn.Module):
r"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
pretrained_window_size (int): Window size in pre-training.
"""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.0,
qkv_bias=True,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
pretrained_window_size=0,
use_pe=True,
res_scale=1.0,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert (
0 <= self.shift_size < self.window_size
), "shift_size must in 0-window_size"
self.res_scale = res_scale
self.attn = WindowAttentionWrapperV2(
shift_size=self.shift_size,
input_resolution=self.input_resolution,
dim=dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
pretrained_window_size=to_2tuple(pretrained_window_size),
use_pe=use_pe,
)
self.norm1 = norm_layer(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=drop,
)
self.norm2 = norm_layer(dim)
def forward(self, x, x_size):
# Window attention
x = x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size)))
# FFN
x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x)))
return x
def extra_repr(self) -> str:
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}"
)
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
nW = H * W / self.window_size / self.window_size
flops += nW * self.attn.flops(self.window_size * self.window_size)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
|