File size: 7,064 Bytes
f6697b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from tensorflow.keras.preprocessing import image
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from transformers import pipeline
import gdown
import os

git_pipe = pipeline("image-to-text", model="microsoft/git-large-textcaps")

flower_output = "Flower_classifier.h5"
flower_model_id = "1AlBunIPDg4HYYCqhcHtOiXxnPFhmsoSn"
flower_url = f"https://drive.google.com/uc?id={flower_model_id}"
if not os.path.exists(flower_output):
    gdown.download(flower_url, flower_output, quiet=False)
flower_model = load_model(flower_output)
flower_model.summary()


bird_output = "Bird_classifier.h5"
bird_model_id = "1a6vqFERbrr_Cw-NyBqVHG7fsjU2-xKJ4"
bird_url = f"https://drive.google.com/uc?id={bird_model_id}"
if not os.path.exists(bird_output):
    gdown.download(bird_url, bird_output, quiet=False)
bird_model = load_model(bird_output)
bird_model.summary()


dog_output = "DogClassifier.h5"
dog_model_id = "1UFn1NGVtP5rhvcWnAANQ_4E9YRJvDEad"
dog_url = f"https://drive.google.com/uc?id={dog_model_id}"
if not os.path.exists(dog_output):
    gdown.download(dog_url, dog_output, quiet=False)
dog_model = load_model(dog_output)
dog_model.summary()


landmark_output = "LandmarkClassifierV5.h5"
landmark_model_id = "1PXixJsrUaVcHEEC-jDlv4tHT2qrCrf5c"  # Replace with your file ID
landmark_url = f"https://drive.google.com/uc?id={landmark_model_id}"
if not os.path.exists(landmark_output):
    gdown.download(landmark_url, landmark_output, quiet=False)
landmark_model = load_model(landmark_output)
landmark_model.summary()


dog_list = [
    "Bulldog",
    "Chihuahua (dog breed)",
    "Dobermann",
    "German Shepherd",
    "Golden Retriever",
    "Husky",
    "Labrador Retriever",
    "Pomeranian dog",
    "Pug",
    "Rottweiler",
    "Street dog",
]
flower_list = [
    "Jasmine",
    "Lavender",
    "Lily",
    "Lotus",
    "Orchid",
    "Rose",
    "Sunflower",
    "Tulip",
    "daisy",
    "dandelion",
]
bird_list = [
    "Crow",
    "Eagle",
    "Flamingo",
    "Hummingbird",
    "Parrot",
    "Peacock",
    "Pigeon",
    "Sparrow",
    "Swan",
]
landmark_list = [
    "The Agra Fort",
    "Ajanta Caves",
    "Alai Darwaza",
    "Amarnath Temple",
    "The Amber Fort",
    "Basilica of Bom Jesus",
    "Brihadisvara Temple",
    "Charar-e-Sharief shrine",
    "Charminar",
    "Chhatrapati Shivaji Terminus",
    "Chota Imambara",
    "Dal Lake",
    "The Elephanta Caves",
    "Ellora Caves",
    "Fatehpur Sikri",
    "Gateway of India",
    "Ghats in Varanasi",
    "Gol Gumbaz",
    "Golden Temple",
    "Group of Monuments at Mahabalipuram",
    "Hampi",
    "Hawa Mahal",
    "Humayun's Tomb",
    "The India gate",
    "Iron Pillar",
    "Jagannath Temple, Puri",
    "Jageshwar",
    "Jama Masjid",
    "Jamali Kamali Tomb",
    "Jantar Mantar, Jaipur",
    "Jantar Mantar, New Delhi",
    "Kedarnath Temple",
    "Khajuraho Temple",
    "Konark Sun Temple",
    "Mahabodhi Temple",
    "Meenakshi Temple",
    "Nalanda mahavihara",
    "Parliament House, New Delhi",
    "Qutb Minar",
    "Qutb Minar Complex",
    "Ram Mandir",
    "Rani ki Vav",
    "Rashtrapati Bhavan",
    "The Red Fort",
    "Sanchi",
    "Supreme Court of India",
    "Swaminarayan Akshardham (Delhi)",
    "Taj Hotels",
    "The Lotus Temple",
    "The Mysore Palace",
    "The Statue of Unity",
    "The Taj Mahal",
    "Vaishno Devi Temple",
    "Venkateswara Temple, Tirumala",
    "Victoria Memorial, Kolkata",
    "Vivekananda Rock Memorial",
]


def identify_dog(img):
    img = img.resize((224, 224))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0

    # Get predictions
    predictions = dog_model.predict(img_array)

    # Get the index of the class with the highest probability
    predicted_class_index = np.argmax(predictions[0])

    # Get the probability of the predicted class
    predicted_probability = predictions[0][predicted_class_index]

    # Map the predicted class index to the class label
    predicted_class_label = dog_list[predicted_class_index]

    return predicted_class_label



def identify_flower(img):
    img = img.resize((224, 224))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0

    # Get predictions
    predictions = flower_model.predict(img_array)

    # Get the index of the class with the highest probability
    predicted_class_index = np.argmax(predictions[0])

    # Get the probability of the predicted class
    predicted_probability = predictions[0][predicted_class_index]

    # Map the predicted class index to the class label
    predicted_class_label = flower_list[predicted_class_index]

    return predicted_class_label



def identify_bird(img):
    # Preprocess the image
    img = img.resize((224, 224))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0

    # Get predictions
    predictions = bird_model.predict(img_array)

    # Get the index of the class with the highest probability
    predicted_class_index = np.argmax(predictions[0])

    # Get the probability of the predicted class
    predicted_probability = predictions[0][predicted_class_index]

    # Map the predicted class index to the class label
    predicted_class_label = bird_list[predicted_class_index]

    return predicted_class_label


def identify_landmark(img):
    # Preprocess the image
    img = img.resize((224, 224))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0

    # Get predictions
    predictions = landmark_model.predict(img_array)

    # Get the index of the class with the highest probability
    predicted_class_index = np.argmax(predictions[0])

    # Get the probability of the predicted class
    predicted_probability = predictions[0][predicted_class_index]

    # Map the predicted class index to the class label
    predicted_class_label = landmark_list[predicted_class_index]

    return predicted_class_label


def generate_final_caption(image):
    caption_dict = git_pipe(image)
    caption = caption_dict[0]["generated_text"]
    image = image.resize((256, 256))
    caption = caption_dict[0]["generated_text"]
    phrases_to_cut = ["with the word", "that says"]
    for phrase in phrases_to_cut:
        index = caption.find(phrase)
        if index != -1:
            caption = caption[:index].strip()

    if (
        "building" in caption.lower()
        or "monument" in caption.lower()
        or "tower" in caption.lower()
    ):
        caption += "\nThe landmark is : " + identify_landmark(image)
    elif "flower" in caption.lower() or "flowers" in caption.lower():
        caption += "\nThe Flower is : " + identify_flower(image)
    elif "dog" in caption.lower() or "puppy" in caption.lower():
        caption += "\nThe Dog is : " + identify_dog(image)
    elif "birds" in caption.lower() or "bird" in caption.lower():
        caption += "\nThe Bird is : " + identify_bird(image)
    return caption