Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
try: | |
import torchsparse | |
import torchsparse.nn as spnn | |
from ..ts import basic_blocks | |
except ImportError: | |
raise Exception('Required ts lib. Reference: https://github.com/mit-han-lab/torchsparse/tree/v1.4.0') | |
class Model(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
cr = config.model_params.cr | |
cs = config.model_params.layer_num | |
cs = [int(cr * x) for x in cs] | |
self.pres = self.vres = config.model_params.voxel_size | |
self.num_classes = config.model_params.num_class | |
self.stem = nn.Sequential( | |
spnn.Conv3d(config.model_params.input_dims, cs[0], kernel_size=3, stride=1), | |
spnn.BatchNorm(cs[0]), spnn.ReLU(True), | |
spnn.Conv3d(cs[0], cs[0], kernel_size=3, stride=1), | |
spnn.BatchNorm(cs[0]), spnn.ReLU(True)) | |
self.stage1 = nn.Sequential( | |
basic_blocks.BasicConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1), | |
basic_blocks.ResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1), | |
basic_blocks.ResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1), | |
) | |
self.stage2 = nn.Sequential( | |
basic_blocks.BasicConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1), | |
basic_blocks.ResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1), | |
basic_blocks.ResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1), | |
) | |
self.stage3 = nn.Sequential( | |
basic_blocks.BasicConvolutionBlock(cs[2], cs[2], ks=2, stride=2, dilation=1), | |
basic_blocks.ResidualBlock(cs[2], cs[3], ks=3, stride=1, dilation=1), | |
basic_blocks.ResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1), | |
) | |
self.stage4 = nn.Sequential( | |
basic_blocks.BasicConvolutionBlock(cs[3], cs[3], ks=2, stride=2, dilation=1), | |
basic_blocks.ResidualBlock(cs[3], cs[4], ks=3, stride=1, dilation=1), | |
basic_blocks.ResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1), | |
) | |
self.up1 = nn.ModuleList([ | |
basic_blocks.BasicDeconvolutionBlock(cs[4], cs[5], ks=2, stride=2), | |
nn.Sequential( | |
basic_blocks.ResidualBlock(cs[5] + cs[3], cs[5], ks=3, stride=1, | |
dilation=1), | |
basic_blocks.ResidualBlock(cs[5], cs[5], ks=3, stride=1, dilation=1), | |
) | |
]) | |
self.up2 = nn.ModuleList([ | |
basic_blocks.BasicDeconvolutionBlock(cs[5], cs[6], ks=2, stride=2), | |
nn.Sequential( | |
basic_blocks.ResidualBlock(cs[6] + cs[2], cs[6], ks=3, stride=1, | |
dilation=1), | |
basic_blocks.ResidualBlock(cs[6], cs[6], ks=3, stride=1, dilation=1), | |
) | |
]) | |
self.up3 = nn.ModuleList([ | |
basic_blocks.BasicDeconvolutionBlock(cs[6], cs[7], ks=2, stride=2), | |
nn.Sequential( | |
basic_blocks.ResidualBlock(cs[7] + cs[1], cs[7], ks=3, stride=1, | |
dilation=1), | |
basic_blocks.ResidualBlock(cs[7], cs[7], ks=3, stride=1, dilation=1), | |
) | |
]) | |
self.up4 = nn.ModuleList([ | |
basic_blocks.BasicDeconvolutionBlock(cs[7], cs[8], ks=2, stride=2), | |
nn.Sequential( | |
basic_blocks.ResidualBlock(cs[8] + cs[0], cs[8], ks=3, stride=1, | |
dilation=1), | |
basic_blocks.ResidualBlock(cs[8], cs[8], ks=3, stride=1, dilation=1), | |
) | |
]) | |
self.classifier = nn.Sequential(nn.Linear(cs[8], self.num_classes)) | |
self.weight_initialization() | |
self.dropout = nn.Dropout(0.3, True) | |
def weight_initialization(self): | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm1d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, data_dict, return_logits=False, return_final_logits=False): | |
x = data_dict['lidar'] | |
x.C = x.C.int() | |
x0 = self.stem(x) | |
x1 = self.stage1(x0) | |
x2 = self.stage2(x1) | |
x3 = self.stage3(x2) | |
x4 = self.stage4(x3) | |
if return_logits: | |
output_dict = dict() | |
output_dict['logits'] = x4.F | |
output_dict['batch_indices'] = x4.C[:, -1] | |
return output_dict | |
y1 = self.up1[0](x4) | |
y1 = torchsparse.cat([y1, x3]) | |
y1 = self.up1[1](y1) | |
y2 = self.up2[0](y1) | |
y2 = torchsparse.cat([y2, x2]) | |
y2 = self.up2[1](y2) | |
y3 = self.up3[0](y2) | |
y3 = torchsparse.cat([y3, x1]) | |
y3 = self.up3[1](y3) | |
y4 = self.up4[0](y3) | |
y4 = torchsparse.cat([y4, x0]) | |
y4 = self.up4[1](y4) | |
if return_final_logits: | |
output_dict = dict() | |
output_dict['logits'] = y4.F | |
output_dict['coords'] = y4.C[:, :3] | |
output_dict['batch_indices'] = y4.C[:, -1] | |
return output_dict | |
output = self.classifier(y4.F) | |
data_dict['output'] = output.F | |
return data_dict | |