Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -171,7 +171,8 @@ def run_inference(mode: str, model_name: str, num_molecules: int, seed_num: str,
|
|
171 |
|
172 |
|
173 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
174 |
-
|
|
|
175 |
# Add custom CSS for styling
|
176 |
gr.HTML("""
|
177 |
<style>
|
@@ -220,47 +221,47 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
220 |
|
221 |
with gr.Accordion("About DrugGEN Models", open=False):
|
222 |
gr.Markdown("""
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
""")
|
237 |
|
238 |
with gr.Accordion("Understanding the Metrics", open=False):
|
239 |
gr.Markdown("""
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
""")
|
265 |
|
266 |
with gr.Row():
|
@@ -274,7 +275,6 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
274 |
# Use Gradio Tabs to separate the two modes.
|
275 |
with gr.Tabs():
|
276 |
with gr.TabItem("Classical Generation"):
|
277 |
-
with gr.Row():
|
278 |
num_molecules = gr.Slider(
|
279 |
minimum=10,
|
280 |
maximum=200,
|
@@ -296,19 +296,20 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
296 |
size="lg"
|
297 |
)
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
312 |
|
313 |
with gr.Column(scale=2):
|
314 |
basic_metrics_df = gr.Dataframe(
|
@@ -326,7 +327,7 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
326 |
image_output = gr.Image(label="Structures of Randomly Selected Generated Molecules",
|
327 |
elem_id="molecule_display")
|
328 |
|
329 |
-
|
330 |
|
331 |
# Set up the click actions for each tab.
|
332 |
classical_submit.click(
|
|
|
171 |
|
172 |
|
173 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
174 |
+
|
175 |
+
with gr.Column(scale=1):
|
176 |
# Add custom CSS for styling
|
177 |
gr.HTML("""
|
178 |
<style>
|
|
|
221 |
|
222 |
with gr.Accordion("About DrugGEN Models", open=False):
|
223 |
gr.Markdown("""
|
224 |
+
## Model Variations
|
225 |
+
|
226 |
+
### DrugGEN-AKT1
|
227 |
+
This model is designed to generate molecules targeting the human AKT1 protein (UniProt ID: P31749).
|
228 |
+
|
229 |
+
### DrugGEN-CDK2
|
230 |
+
This model is designed to generate molecules targeting the human CDK2 protein (UniProt ID: P24941).
|
231 |
+
|
232 |
+
### DrugGEN-NoTarget
|
233 |
+
This is a general-purpose model that generates diverse drug-like molecules without targeting a specific protein.
|
234 |
+
- Useful for exploring chemical space, generating diverse scaffolds, and creating molecules with drug-like properties.
|
235 |
+
|
236 |
+
For more details, see our [paper on arXiv](https://arxiv.org/abs/2302.07868).
|
237 |
""")
|
238 |
|
239 |
with gr.Accordion("Understanding the Metrics", open=False):
|
240 |
gr.Markdown("""
|
241 |
+
## Evaluation Metrics
|
242 |
+
|
243 |
+
### Basic Metrics
|
244 |
+
- **Validity**: Percentage of generated molecules that are chemically valid
|
245 |
+
- **Uniqueness**: Percentage of unique molecules among valid ones
|
246 |
+
- **Runtime**: Time taken to generate or evaluate the molecules
|
247 |
+
|
248 |
+
### Novelty Metrics
|
249 |
+
- **Novelty (Train)**: Percentage of molecules not found in the training set
|
250 |
+
- **Novelty (Inference)**: Percentage of molecules not found in the test set
|
251 |
+
- **Novelty (Real Inhibitors)**: Percentage of molecules not found in known inhibitors of the target protein
|
252 |
+
|
253 |
+
### Structural Metrics
|
254 |
+
- **Average Length**: Average component length in the generated molecules
|
255 |
+
- **Mean Atom Type**: Average distribution of atom types
|
256 |
+
- **Internal Diversity**: Diversity within the generated set (higher is more diverse)
|
257 |
+
|
258 |
+
### Drug-likeness Metrics
|
259 |
+
- **QED (Quantitative Estimate of Drug-likeness)**: Score from 0-1 measuring how drug-like a molecule is (higher is better)
|
260 |
+
- **SA Score (Synthetic Accessibility)**: Score from 1-10 indicating ease of synthesis (lower is better)
|
261 |
+
|
262 |
+
### Similarity Metrics
|
263 |
+
- **SNN ChEMBL**: Similarity to ChEMBL molecules (higher means more similar to known drug-like compounds)
|
264 |
+
- **SNN Real Inhibitors**: Similarity to known drugs (higher means more similar to approved drugs)
|
265 |
""")
|
266 |
|
267 |
with gr.Row():
|
|
|
275 |
# Use Gradio Tabs to separate the two modes.
|
276 |
with gr.Tabs():
|
277 |
with gr.TabItem("Classical Generation"):
|
|
|
278 |
num_molecules = gr.Slider(
|
279 |
minimum=10,
|
280 |
maximum=200,
|
|
|
296 |
size="lg"
|
297 |
)
|
298 |
|
299 |
+
with gr.TabItem("Custom Input SMILES"):
|
300 |
+
custom_smiles = gr.Textbox(
|
301 |
+
label="Input SMILES (one per line, maximum 100 molecules)",
|
302 |
+
placeholder="C(C(=O)O)N\nCCO\n...",
|
303 |
+
lines=10
|
304 |
+
)
|
305 |
+
|
306 |
+
custom_submit = gr.Button(
|
307 |
+
value="Generate Molecules using Custom SMILES",
|
308 |
+
variant="primary",
|
309 |
+
size="lg"
|
310 |
+
)
|
311 |
+
|
312 |
+
gr.Markdown("### Created by the HUBioDataLab | [GitHub](https://github.com/HUBioDataLab/DrugGEN) | [Paper](https://arxiv.org/abs/2302.07868)")
|
313 |
|
314 |
with gr.Column(scale=2):
|
315 |
basic_metrics_df = gr.Dataframe(
|
|
|
327 |
image_output = gr.Image(label="Structures of Randomly Selected Generated Molecules",
|
328 |
elem_id="molecule_display")
|
329 |
|
330 |
+
|
331 |
|
332 |
# Set up the click actions for each tab.
|
333 |
classical_submit.click(
|