import json import pandas as pd import csv from typing import Dict, Union import locale model_details = { "DeepSeek R1": ("https://huggingface.co./deepseek-ai/DeepSeek-R1", 685, "General"), "Llama 3.1 405B": ("https://huggingface.co./meta-llama/Llama-3.1-405B", 406, "General"), "Llama 3.(1-3) 70B": ("https://huggingface.co./meta-llama/Llama-3.3-70B-Instruct", 70.6, "General"), "Qwen2.5 72B": ("https://huggingface.co./Qwen/Qwen2.5-72B-Instruct", 72.7, "General"), "Qwen2.5 32B": ("https://huggingface.co./Qwen/Qwen2.5-32B", 32.5, "General"), "StarChat2 15B v0.1": ("https://huggingface.co./HuggingFaceH4/starchat2-15b-v0.1", 16, "General"), "DeepSeek R1 Distill Qwen 14B": ("https://huggingface.co./deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", 14.8, "General"), "CodeLlama 70B": ("https://huggingface.co./codellama/CodeLlama-70b-hf", 69, "Coding"), "QwenCoder 2.5 32B": ("https://huggingface.co./Qwen/Qwen2.5-Coder-32B-Instruct", 32.5, "Coding"), "DeepSeek Coder 33B": ("https://huggingface.co./deepseek-ai/deepseek-coder-33b-instruct", 33.3, "Coding"), "QwenCoder 2.5 14B": ("https://huggingface.co./Qwen/Qwen2.5-Coder-14B-Instruct", 14.7, "Coding"), "OpenCoder 8B": ("https://huggingface.co./infly/OpenCoder-8B-Instruct", 7.77, "Coding"), "QwenCoder 2.5 7B": ("https://huggingface.co./Qwen/Qwen2.5-Coder-7B-Instruct", 7.61, "Coding"), "DeepSeek Coder 6,7B": ("https://huggingface.co./deepseek-ai/deepseek-coder-6.7b-instruct", 6.74, "Coding"), "HaVen-CodeQwen": ("https://huggingface.co./yangyiyao/HaVen-CodeQwen", 7.25, "RTL-Specific"), "CodeV-CL-7B": ("https://huggingface.co./yang-z/CodeV-CL-7B", 6.74, "RTL-Specific"), "CodeV-QW-7B": ("https://huggingface.co./yang-z/CodeV-QW-7B", 7.25, "RTL-Specific"), "CodeV-DS-6.7B": ("https://huggingface.co./yang-z/CodeV-DS-6.7B", 6.74, "RTL-Specific"), "RTLCoder Mistral": ("https://huggingface.co./ishorn5/RTLCoder-v1.1", 7.24, "RTL-Specific"), "RTLCoder DeepSeek": ("https://huggingface.co./ishorn5/RTLCoder-Deepseek-v1.1", 6.74, "RTL-Specific"), "OriGen": ("https://huggingface.co./henryen/OriGen_Fix", 6.74, "RTL-Specific") } def get_headers(reader, agg=False) -> Union[list, list]: metrics, benchs = [], [] for i, row in enumerate(reader): if i == 0: metrics = row[1:] elif i == 1 and not agg: benchs = row[1:] break else: return metrics return metrics, benchs def get_model_params_and_url(model) -> Union[str, str, float]: if model not in model_details: return "-", "-", "-" url = model_details[model][0] params = model_details[model][1] type = model_details[model][2] return url, params, type def parse_results(csv_path: str) -> list[dict]: """ Each row has the following format: MODEL | BENCHMARK | TASK | METRIC | RESULT """ dataset = [] models = [] with open(csv_path, newline='') as csvfile: reader = csv.reader(csvfile, delimiter=',') metrics, benchs = get_headers(reader) for i, row in enumerate(reader): model = row[0] url, params, type = get_model_params_and_url(model) models.append(model) row = row[1:] ctr = 0 for metric, bench in zip(metrics, benchs): if metric == "EM": metric = "Exact Matching (EM)" record = {} record["Model"] = model record["Model Type"] = type record["Benchmark"] = bench record["Task"] = metric record["Result"] = float(row[ctr].replace(',','.')) record["Model URL"] = url record["Params"] = params dataset.append(record) ctr += 1 print(models) return dataset def parse_agg(csv_path: str) -> list[dict]: """ Each row has the following format: MODEL | BENCHMARK | TASK | METRIC | RESULT """ return pd.read_csv("aggregated_scores.csv") def writeJson(data: list): with open('results.json', 'w') as f: json.dump(data, f, indent=4, ensure_ascii=False) print("Done") def read_json(): json_path = "./results.json" with open(json_path, "r", encoding="utf-8") as file: data = json.load(file) return data def read_data() -> Union[pd.DataFrame, list, list, str]: data = read_json() df = pd.DataFrame(data) df.rename(columns={'Model': 'Model', 'Benchmark': 'Benchmark', 'Task': 'Metric', 'Result': 'Score', 'EM': 'Exact Matching (EM)'}, inplace=True) df['Params'] = pd.to_numeric(df['Params'], errors='coerce') benchmarks = sorted(df['Benchmark'].unique().tolist(), reverse=True) metrics = df['Metric'].unique().tolist() default_metric = 'Functionality (FNC)' if 'Functionality (FNC)' in metrics else metrics[0] return df, benchmarks, metrics, default_metric if __name__ == "__main__": csv_path = "./results.csv" d = parse_results(csv_path) writeJson(d)