Spaces:
Running
Running
File size: 15,054 Bytes
65e4811 3e202b5 c94926c aaf0c71 65e4811 0762cf8 65e4811 aaf0c71 b20457b aaf0c71 becd2f0 aaf0c71 8e9d8db aaf0c71 b20457b aaf0c71 65e4811 becd2f0 65e4811 b20457b aaf0c71 8e9d8db b20457b 65e4811 aaf0c71 cc18a4c aaf0c71 cc18a4c 8e9d8db cc18a4c aaf0c71 cc18a4c 65e4811 a25be15 65e4811 a25be15 218e8a1 a25be15 65e4811 aaf0c71 65e4811 a25be15 65e4811 73cf0ca 65e4811 3e202b5 65e4811 3e202b5 65e4811 3e202b5 65e4811 3e202b5 65e4811 c94926c 0762cf8 65e4811 aaf0c71 8e9d8db aaf0c71 8e9d8db a25be15 e996c33 aaf0c71 c94926c 388e11b c94926c 388e11b 71c4da9 fce1a0c 388e11b e70391f 71c4da9 fce1a0c 388e11b 425eb6f 71c4da9 fce1a0c 388e11b 65e4811 aaf0c71 8e9d8db aaf0c71 8e9d8db aaf0c71 65e4811 aaf0c71 8e9d8db aaf0c71 8e9d8db aaf0c71 8e9d8db aaf0c71 65e4811 aaf0c71 65e4811 2a6282d e996c33 57263c9 cf4f8a2 cc18a4c 65e4811 aaf0c71 a25be15 218e8a1 a25be15 73cf0ca f73e511 becd2f0 f73e511 73cf0ca e500b12 73cf0ca 559ad26 73cf0ca 559ad26 73cf0ca 559ad26 73cf0ca 3e202b5 65e4811 73cf0ca 65e4811 630784c aaf0c71 65e4811 e996c33 a25be15 65e4811 c94926c 65e4811 c94926c 65e4811 3e202b5 40758cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import json
import pandas as pd
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from css_html_js import custom_css, trigger_plot
from parse import read_json, read_data, parse_agg
from utils import model_hyperlink, filter_RTLRepo, filter_bench, filter_bench_all, handle_special_cases, type_emoji
from typing import Union
from about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from gradio.themes.utils import colors
def filter_leaderboard(task, benchmark, model_type, search_query, max_params):
subset = df.copy()
# Filter by task specific benchmarks when 'All' benchmarks is selected
if task == "Spec-to-RTL":
valid_benchmarks = s2r_benchs
if benchmark == 'All':
subset = subset[subset['Benchmark'].isin(valid_benchmarks)]
elif task == "Code Completion":
valid_benchmarks = cc_benchs
if benchmark == 'All':
subset = subset[subset['Benchmark'].isin(valid_benchmarks)]
elif task == "Line Completion":
valid_benchmarks = lc_benchs
if benchmark == 'All':
subset = subset[subset['Benchmark'].isin(valid_benchmarks)]
if benchmark != 'All':
subset = df[df['Benchmark'] == benchmark]
if model_type != 'All':
# without emojis
subset = subset[subset['Model Type'] == model_type]
if search_query:
subset = subset[subset['Model'].str.contains(search_query, case=False, na=False)]
max_params = float(max_params)
subset = subset[subset['Params'] <= max_params]
if benchmark == 'All':
if task == 'Spec-to-RTL':
return filter_bench_all(subset, df_agg, agg_column='Agg S2R')
elif task == 'Code Completion':
return filter_bench_all(subset, df_agg, agg_column='Agg MC')
elif task == 'Line Completion':
return filter_RTLRepo(subset)
elif benchmark == 'RTL-Repo':
return filter_RTLRepo(subset)
else:
agg_column = None
if benchmark == 'VerilogEval S2R':
agg_column = 'Agg VerilogEval S2R'
elif benchmark == 'VerilogEval MC':
agg_column = 'Agg VerilogEval MC'
elif benchmark == 'RTLLM':
agg_column = 'Agg RTLLM'
elif benchmark == 'VeriGen':
agg_column = 'Agg VeriGen'
return filter_bench(subset, df_agg, agg_column)
def update_benchmarks_by_task(task):
if task == "Spec-to-RTL":
new_benchmarks = ["All"] + s2r_benchs
elif task == "Code Completion":
new_benchmarks = ["All"] + cc_benchs
elif task == "Line Completion":
new_benchmarks = lc_benchs
else:
new_benchmarks = ["All"] + benchmarks
benchmark_value = "All" if "All" in new_benchmarks else new_benchmarks[0]
filtered = filter_leaderboard(task, benchmark_value, model_type_dropdown.value, search_box.value, params_slider.value)
return gr.update(value=benchmark_value, choices=new_benchmarks), filtered
def generate_scatter_plot(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
subset = df[df['Benchmark'] == benchmark]
if benchmark == "RTL-Repo":
subset = subset[subset['Metric'].str.contains('EM', case=False, na=False)]
detailed_scores = subset.groupby('Model', as_index=False)['Score'].mean()
detailed_scores.rename(columns={'Score': 'Exact Matching (EM)'}, inplace=True)
else:
detailed_scores = subset.pivot_table(index='Model', columns='Metric', values='Score').reset_index()
details = df[['Model', 'Params', 'Model Type']].drop_duplicates('Model')
scatter_data = pd.merge(detailed_scores, details, on='Model', how='left').dropna(subset=['Params', metric])
scatter_data['x'] = scatter_data['Params']
scatter_data['y'] = scatter_data[metric]
scatter_data['size'] = (scatter_data['x'] ** 0.3) * 40
type_colors = {"General": "green", "Coding": "yellow", "RTL-Specific": "blue"}
scatter_data['color'] = scatter_data['Model Type'].map(type_colors).fillna('gray')
y_axis_limits = {
'Functionality (FNC)': [5, 90], 'Syntax (STX)': [20, 100], 'Synthesis (SYN)': [5, 90],
'Power': [0, 50], 'Performance': [0, 50], 'Area': [0, 50], 'Exact Matching (EM)': [0, 50]
}
y_range = y_axis_limits.get(metric, [0, 80])
fig = px.scatter(
scatter_data, x='x', y='y', log_x=True, size='size', color='Model Type', text='Model',
hover_data={metric: ':.2f'}, title=f'Params vs. {metric} for {benchmark}',
labels={'x': '# Params (Log Scale)', 'y': metric}, template="plotly_white",
height=600, width=1200
)
fig.update_traces(
textposition='top center', textfont_size=10,
marker=dict(opacity=0.8, line=dict(width=0.5, color='black'))
)
fig.update_layout(
xaxis=dict(
showgrid=True, type='log', tickmode='array',
tickvals=[8, 14, 32, 72, 200, 700],
ticktext=['8', '14', '32', '72', '200', '700']
),
showlegend=False, yaxis=dict(range=y_range),
margin=dict(l=50, r=50, t=50, b=50), plot_bgcolor='white'
)
return fig
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Default(primary_hue=colors.emerald)) as app:
df, benchmarks, metrics, default_metric = read_data()
df_agg = parse_agg("./aggregated_scores.csv")
tasks = ["Spec-to-RTL", "Code Completion", "Line Completion"]
s2r_benchs = ["VerilogEval S2R", "RTLLM"]
cc_benchs = ["VerilogEval MC", "VeriGen"]
lc_benchs = ["RTL-Repo"]
non_rtl_metrics = ["Syntax (STX)", "Functionality (FNC)", "Synthesis (SYN)", "Power", "Performance", "Area"]
rtl_metrics = ["Exact Matching (EM)"]
model_types = ['All', 'General', 'Coding', 'RTL-Specific']
gr.HTML("""
<p align="center" style="margin-bottom: -10px;">
<img src='/gradio_api/file=logo.png' alt='TuRTLe Logo' width='220'/> <br/>
</p>
""")
gr.HTML("""
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/js/all.min.js"></script>
<div style="text-align: center; margin-bottom: 15px;">
<p style="margin-bottom: 15px;">Welcome to the TuRTLe Model Leaderboard! Use the filters below to explore different RTL benchmarks and models.</p>
<a href="https://github.com/HPAI-BSC" target="_blank" style="text-decoration: none; margin-right: 10px;">
<button style="background: #333; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
GitHub Repo
</button>
</a>
<a href="http://arxiv.org/abs/2504.01986" target="_blank" style="text-decoration: none; margin-right: 10px;">
<button style="background: #b31b1b; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
arXiv Preprint
</button>
</a>
<a href="mailto:[email protected]?subject=TuRTLe%20leaderboard%20new%20entry&body=Link%20to%20HuggingFace%20Model:" style="text-decoration: none;">
<button style="background: #00674F; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
How to submit
</button>
</a>
<p style="margin-top: 15px;">If you have any inquiries or wish to collaborate:
<a href="mailto:[email protected]">[email protected]</a>
</p>
</div>
""")
with gr.Tabs():
with gr.Tab("Leaderboard"):
with gr.Row(equal_height=True):
with gr.Column():
task_radio = gr.Radio(choices=tasks, label="Select Task", value='Spec-to-RTL')
with gr.Column():
benchmark_radio = gr.Radio(choices=["All"] + s2r_benchs, label="Select Benchmark", value='All')
with gr.Row(equal_height=True):
with gr.Column():
search_box = gr.Textbox(label="Search Model", placeholder="Type model name...")
with gr.Column():
model_type_dropdown = gr.Dropdown(
choices=model_types,
label="Select Model Type",
value='All'
)
with gr.Column():
params_slider = gr.Slider(
minimum=df['Params'].min(),
maximum=700,
value=700,
label="Max Params",
step=1
)
leaderboard = gr.DataFrame(
value=filter_leaderboard('Spec-to-RTL', 'All', 'All', "", 700),
headers="first row",
show_row_numbers=True,
wrap=True,
datatype=["markdown", "html",],
interactive=False,
column_widths=["7%", "25%", "10%", "17%", "6%", "6%", "6%", "6%", "6%", "7%"])
with gr.Tab("Interactive Bubble Plot"):
with gr.Row(equal_height=True):
default_benchmark = s2r_benchs[0]
bubble_benchmark = gr.Dropdown(choices=benchmarks, label="Select Benchmark", value=default_benchmark, elem_classes="gr-dropdown")
default_metric = non_rtl_metrics[0]
bubble_metric = gr.Dropdown(choices=non_rtl_metrics[:-1], label="Select Metric", value=default_metric)
with gr.Row(equal_height=True):
scatter_plot = gr.Plot(value=generate_scatter_plot(default_benchmark, default_metric), label="Bubble Chart", elem_id="full-width-plot")
with gr.Tab("About Us"):
gr.HTML(
"""
<div style="max-width: 800px; margin: auto; padding: 20px; border: 1px solid #ccc; border-radius: 10px;">
<div style="display: flex; justify-content: center; align-items: center; gap: 5%; margin-bottom: 20px;">
<img src='/gradio_api/file=hpai_logo_grad.png' alt='HPAI Group Logo' style="width: 45%;"/>
<img src='/gradio_api/file=bsc-logo.png' alt='BSC Logo' style="width: 25%;"/>
</div>
<p style="font-size: 16px; text-align: start;">
The <b>High-Performance Artificial Intelligence (HPAI)</b> group is part of the
<a href="https://bsc.es/" target="_blank">Barcelona Supercomputing Center (BSC)</a>.
This leaderboard is maintained by HPAI as part of our commitment to <b>open science</b>.
</p>
<ul style="font-size: 16px; margin-bottom: 20px; margin-top: 20px;">
<li><a href="https://hpai.bsc.es/" target="_blank">Official Website</a></li>
<li><a href="https://github.com/HPAI-BSC/" target="_blank">GitHub Organization Page</a></li>
<li><a href="https://huggingface.co./HPAI-BSC/" target="_blank">Hugging Face Organization Page</a></li>
</ul>
<p style="font-size: 16px; margin-top: 15px;">
Feel free to contact us:
</p>
<p style="font-size: 16px;">Email: <a href="mailto:[email protected]"><b>[email protected]</b></a></p>
</div>
"""
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# event handlers, ugly way but it works
task_radio.change(fn=update_benchmarks_by_task, inputs=[task_radio], outputs=[benchmark_radio, leaderboard])
benchmark_radio.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)
model_type_dropdown.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)
search_box.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)
params_slider.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)
def on_benchmark_change(benchmark, _):
if benchmark == "RTL-Repo":
metric = "Exact Matching (EM)"
return gr.update(choices=rtl_metrics, value=metric), generate_scatter_plot(benchmark, metric)
else:
metric = non_rtl_metrics[0]
return gr.update(choices=non_rtl_metrics[:-1], value=metric), generate_scatter_plot(benchmark, metric)
def on_metric_change(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
fig = generate_scatter_plot(benchmark, metric)
return gr.update(value=benchmark), fig
bubble_benchmark.change(
fn=on_benchmark_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_metric, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""")
bubble_metric.change(
fn=on_metric_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_benchmark, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""")
app.launch(allowed_paths=["logo.png", "hpai_logo_grad.png", "bsc-logo.png"])
|