File size: 15,054 Bytes
65e4811
 
3e202b5
 
c94926c
aaf0c71
 
65e4811
 
 
 
 
0762cf8
65e4811
aaf0c71
b20457b
aaf0c71
becd2f0
aaf0c71
 
 
 
 
 
 
 
8e9d8db
 
 
 
aaf0c71
b20457b
 
aaf0c71
65e4811
becd2f0
65e4811
 
 
 
 
b20457b
 
aaf0c71
 
 
 
8e9d8db
 
b20457b
65e4811
 
aaf0c71
 
 
 
 
 
 
 
 
 
 
 
 
 
cc18a4c
aaf0c71
cc18a4c
8e9d8db
cc18a4c
aaf0c71
cc18a4c
 
 
 
65e4811
 
a25be15
 
 
 
 
 
 
65e4811
a25be15
218e8a1
a25be15
 
65e4811
 
 
 
aaf0c71
65e4811
 
 
 
 
a25be15
65e4811
 
 
 
73cf0ca
65e4811
 
 
3e202b5
65e4811
 
 
 
3e202b5
65e4811
 
 
 
 
3e202b5
65e4811
 
3e202b5
 
65e4811
 
c94926c
 
 
 
 
 
 
 
 
 
 
0762cf8
65e4811
aaf0c71
8e9d8db
aaf0c71
8e9d8db
 
a25be15
e996c33
aaf0c71
 
c94926c
388e11b
c94926c
 
 
388e11b
 
 
 
 
 
71c4da9
fce1a0c
388e11b
 
 
e70391f
71c4da9
fce1a0c
388e11b
 
 
425eb6f
71c4da9
fce1a0c
388e11b
 
 
 
 
 
65e4811
 
 
aaf0c71
8e9d8db
aaf0c71
8e9d8db
aaf0c71
65e4811
aaf0c71
8e9d8db
aaf0c71
8e9d8db
aaf0c71
 
 
 
 
8e9d8db
aaf0c71
 
 
 
 
 
 
65e4811
 
aaf0c71
65e4811
2a6282d
e996c33
57263c9
cf4f8a2
cc18a4c
65e4811
 
aaf0c71
a25be15
 
 
 
218e8a1
a25be15
73cf0ca
 
 
 
 
f73e511
becd2f0
 
f73e511
73cf0ca
e500b12
73cf0ca
 
 
 
 
559ad26
73cf0ca
 
 
 
 
559ad26
73cf0ca
 
 
559ad26
73cf0ca
 
3e202b5
65e4811
73cf0ca
 
 
 
 
 
 
 
 
 
65e4811
630784c
aaf0c71
 
 
 
65e4811
e996c33
 
 
 
 
a25be15
 
65e4811
 
 
 
 
 
 
 
 
c94926c
 
 
 
 
 
 
 
 
 
 
 
65e4811
 
 
 
c94926c
 
 
 
 
 
 
 
 
 
 
 
65e4811
3e202b5
40758cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import json
import pandas as pd
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from css_html_js import custom_css, trigger_plot
from parse import read_json, read_data, parse_agg
from utils import model_hyperlink, filter_RTLRepo, filter_bench, filter_bench_all, handle_special_cases, type_emoji
from typing import Union
from about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from gradio.themes.utils import colors

def filter_leaderboard(task, benchmark, model_type, search_query, max_params):
    subset = df.copy()
    
    # Filter by task specific benchmarks when 'All' benchmarks is selected
    if task == "Spec-to-RTL":
        valid_benchmarks = s2r_benchs
        if benchmark == 'All':
            subset = subset[subset['Benchmark'].isin(valid_benchmarks)]
    elif task == "Code Completion":
        valid_benchmarks = cc_benchs
        if benchmark == 'All':
            subset = subset[subset['Benchmark'].isin(valid_benchmarks)]
    elif task == "Line Completion":
        valid_benchmarks = lc_benchs
        if benchmark == 'All':
            subset = subset[subset['Benchmark'].isin(valid_benchmarks)]
    
    if benchmark != 'All':
        subset = df[df['Benchmark'] == benchmark]
        
    if model_type != 'All':
        # without emojis
        subset = subset[subset['Model Type'] == model_type]
    if search_query:
        subset = subset[subset['Model'].str.contains(search_query, case=False, na=False)]
    max_params = float(max_params)
    subset = subset[subset['Params'] <= max_params]

    if benchmark == 'All':
        if task == 'Spec-to-RTL':
            return filter_bench_all(subset, df_agg, agg_column='Agg S2R')
        elif task == 'Code Completion':
            return filter_bench_all(subset, df_agg, agg_column='Agg MC')
        elif task == 'Line Completion':
            return filter_RTLRepo(subset)
    elif benchmark == 'RTL-Repo':
        return filter_RTLRepo(subset)
    else:
        agg_column = None
        if benchmark == 'VerilogEval S2R':
            agg_column = 'Agg VerilogEval S2R'
        elif benchmark == 'VerilogEval MC':
            agg_column = 'Agg VerilogEval MC'
        elif benchmark == 'RTLLM':
            agg_column = 'Agg RTLLM'
        elif benchmark == 'VeriGen':
            agg_column = 'Agg VeriGen'
        
        return filter_bench(subset, df_agg, agg_column)

def update_benchmarks_by_task(task):
    if task == "Spec-to-RTL":
        new_benchmarks = ["All"] + s2r_benchs
    elif task == "Code Completion":
        new_benchmarks = ["All"] + cc_benchs
    elif task == "Line Completion":
        new_benchmarks = lc_benchs
    else:
        new_benchmarks = ["All"] + benchmarks
    benchmark_value = "All" if "All" in new_benchmarks else new_benchmarks[0]
    filtered = filter_leaderboard(task, benchmark_value, model_type_dropdown.value, search_box.value, params_slider.value)
    return gr.update(value=benchmark_value, choices=new_benchmarks), filtered

def generate_scatter_plot(benchmark, metric):
    benchmark, metric = handle_special_cases(benchmark, metric)
    
    subset = df[df['Benchmark'] == benchmark]
    if benchmark == "RTL-Repo":
        subset = subset[subset['Metric'].str.contains('EM', case=False, na=False)]
        detailed_scores = subset.groupby('Model', as_index=False)['Score'].mean()
        detailed_scores.rename(columns={'Score': 'Exact Matching (EM)'}, inplace=True)
    else:
        detailed_scores = subset.pivot_table(index='Model', columns='Metric', values='Score').reset_index()
        
    details = df[['Model', 'Params', 'Model Type']].drop_duplicates('Model')
    scatter_data = pd.merge(detailed_scores, details, on='Model', how='left').dropna(subset=['Params', metric])

    scatter_data['x'] = scatter_data['Params']
    scatter_data['y'] = scatter_data[metric]
    scatter_data['size'] = (scatter_data['x'] ** 0.3) * 40

    type_colors = {"General": "green", "Coding": "yellow", "RTL-Specific": "blue"}
    scatter_data['color'] = scatter_data['Model Type'].map(type_colors).fillna('gray')

    y_axis_limits = {
        'Functionality (FNC)': [5, 90], 'Syntax (STX)': [20, 100], 'Synthesis (SYN)': [5, 90],
        'Power': [0, 50], 'Performance': [0, 50], 'Area': [0, 50], 'Exact Matching (EM)': [0, 50]
    }
    y_range = y_axis_limits.get(metric, [0, 80])

    fig = px.scatter(
        scatter_data, x='x', y='y', log_x=True, size='size', color='Model Type', text='Model',
        hover_data={metric: ':.2f'}, title=f'Params vs. {metric} for {benchmark}',
        labels={'x': '# Params (Log Scale)', 'y': metric}, template="plotly_white",
        height=600, width=1200
    )

    fig.update_traces(
        textposition='top center', textfont_size=10,
        marker=dict(opacity=0.8, line=dict(width=0.5, color='black'))
    )
    fig.update_layout(
        xaxis=dict(
            showgrid=True, type='log', tickmode='array',
            tickvals=[8, 14, 32, 72, 200, 700],
            ticktext=['8', '14', '32', '72', '200', '700']
        ),
        showlegend=False, yaxis=dict(range=y_range),
        margin=dict(l=50, r=50, t=50, b=50), plot_bgcolor='white'
    )

    return fig

js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        window.location.href = url.href;
    }
}
"""
        
with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Default(primary_hue=colors.emerald)) as app:
    df, benchmarks, metrics, default_metric = read_data()
    df_agg = parse_agg("./aggregated_scores.csv")
    tasks = ["Spec-to-RTL", "Code Completion", "Line Completion"]
    s2r_benchs = ["VerilogEval S2R", "RTLLM"]
    cc_benchs = ["VerilogEval MC", "VeriGen"]
    lc_benchs = ["RTL-Repo"]
    non_rtl_metrics = ["Syntax (STX)", "Functionality (FNC)", "Synthesis (SYN)", "Power", "Performance", "Area"]
    rtl_metrics = ["Exact Matching (EM)"]
    model_types = ['All', 'General', 'Coding', 'RTL-Specific']
    
    gr.HTML("""
    <p align="center" style="margin-bottom: -10px;">
        <img src='/gradio_api/file=logo.png' alt='TuRTLe Logo' width='220'/> <br/>
    </p>
    """)
    gr.HTML("""
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
    <script defer src="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/js/all.min.js"></script>
    <div style="text-align: center; margin-bottom: 15px;">
        <p style="margin-bottom: 15px;">Welcome to the TuRTLe Model Leaderboard! Use the filters below to explore different RTL benchmarks and models.</p>
        <a href="https://github.com/HPAI-BSC" target="_blank" style="text-decoration: none; margin-right: 10px;">
            <button style="background: #333; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
                GitHub Repo 
            </button>
        </a>

        <a href="http://arxiv.org/abs/2504.01986" target="_blank" style="text-decoration: none; margin-right: 10px;">
            <button style="background: #b31b1b; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
                arXiv Preprint
            </button>
        </a>

        <a href="mailto:[email protected]?subject=TuRTLe%20leaderboard%20new%20entry&body=Link%20to%20HuggingFace%20Model:" style="text-decoration: none;">
            <button style="background: #00674F; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
                How to submit
            </button>
        </a>
    <p style="margin-top: 15px;">If you have any inquiries or wish to collaborate: 
        <a href="mailto:[email protected]">[email protected]</a>
    </p>
    </div>
    """)
    with gr.Tabs():
        with gr.Tab("Leaderboard"):
            with gr.Row(equal_height=True):
                with gr.Column():
                    task_radio = gr.Radio(choices=tasks, label="Select Task", value='Spec-to-RTL')
                with gr.Column():
                    benchmark_radio = gr.Radio(choices=["All"] + s2r_benchs, label="Select Benchmark", value='All')
            
            with gr.Row(equal_height=True):
                with gr.Column():
                    search_box = gr.Textbox(label="Search Model", placeholder="Type model name...")
                with gr.Column():
                    model_type_dropdown = gr.Dropdown(
                        choices=model_types,
                        label="Select Model Type",
                        value='All'
                    )
                with gr.Column():
                    params_slider = gr.Slider(
                        minimum=df['Params'].min(),
                        maximum=700,
                        value=700,
                        label="Max Params",
                        step=1
                    )
            
            leaderboard = gr.DataFrame(
                value=filter_leaderboard('Spec-to-RTL', 'All', 'All', "", 700),
                headers="first row",
                show_row_numbers=True,
                wrap=True,
                datatype=["markdown", "html",],
                interactive=False,
                column_widths=["7%", "25%", "10%", "17%", "6%", "6%", "6%", "6%", "6%", "7%"])
        
        with gr.Tab("Interactive Bubble Plot"):
            with gr.Row(equal_height=True):
                default_benchmark = s2r_benchs[0]
                bubble_benchmark = gr.Dropdown(choices=benchmarks, label="Select Benchmark", value=default_benchmark, elem_classes="gr-dropdown")
                default_metric = non_rtl_metrics[0]
                bubble_metric = gr.Dropdown(choices=non_rtl_metrics[:-1], label="Select Metric", value=default_metric)
            with gr.Row(equal_height=True):
                scatter_plot = gr.Plot(value=generate_scatter_plot(default_benchmark, default_metric), label="Bubble Chart", elem_id="full-width-plot")

        with gr.Tab("About Us"):
            gr.HTML(
                """
                <div style="max-width: 800px; margin: auto; padding: 20px; border: 1px solid #ccc; border-radius: 10px;">
                    <div style="display: flex; justify-content: center; align-items: center; gap: 5%; margin-bottom: 20px;">
                        <img src='/gradio_api/file=hpai_logo_grad.png' alt='HPAI Group Logo' style="width: 45%;"/>
                        <img src='/gradio_api/file=bsc-logo.png' alt='BSC Logo' style="width: 25%;"/>
                    </div>

                    <p style="font-size: 16px; text-align: start;">
                        The <b>High-Performance Artificial Intelligence (HPAI)</b> group is part of the 
                        <a href="https://bsc.es/" target="_blank">Barcelona Supercomputing Center (BSC)</a>. 
                        This leaderboard is maintained by HPAI as part of our commitment to <b>open science</b>.
                    </p>

                    <ul style="font-size: 16px; margin-bottom: 20px; margin-top: 20px;">
                        <li><a href="https://hpai.bsc.es/" target="_blank">Official Website</a></li>
                        <li><a href="https://github.com/HPAI-BSC/" target="_blank">GitHub Organization Page</a></li>
                        <li><a href="https://huggingface.co./HPAI-BSC/" target="_blank">Hugging Face Organization Page</a></li>
                    </ul>

                    <p style="font-size: 16px; margin-top: 15px;">
                        Feel free to contact us:
                    </p>

                    <p style="font-size: 16px;">Email: <a href="mailto:[email protected]"><b>[email protected]</b></a></p>
                </div>
                """
            )
    
        with gr.Row():
            with gr.Accordion("📙 Citation", open=False):
                citation_button = gr.Textbox(
                    value=CITATION_BUTTON_TEXT,
                    label=CITATION_BUTTON_LABEL,
                    lines=20,
                    elem_id="citation-button",
                    show_copy_button=True,
                )
    
    # event handlers, ugly way but it works
    task_radio.change(fn=update_benchmarks_by_task, inputs=[task_radio], outputs=[benchmark_radio, leaderboard])
    benchmark_radio.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)
    model_type_dropdown.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)
    search_box.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)
    params_slider.change(fn=filter_leaderboard, inputs=[task_radio, benchmark_radio, model_type_dropdown, search_box, params_slider], outputs=leaderboard)

    def on_benchmark_change(benchmark, _):
        if benchmark == "RTL-Repo":
            metric = "Exact Matching (EM)"
            return gr.update(choices=rtl_metrics, value=metric), generate_scatter_plot(benchmark, metric)
        else:
            metric = non_rtl_metrics[0]
            return gr.update(choices=non_rtl_metrics[:-1], value=metric), generate_scatter_plot(benchmark, metric)

    def on_metric_change(benchmark, metric):
        benchmark, metric = handle_special_cases(benchmark, metric)
        fig = generate_scatter_plot(benchmark, metric)
        return gr.update(value=benchmark), fig

    bubble_benchmark.change(
        fn=on_benchmark_change, 
        inputs=[bubble_benchmark, bubble_metric],
        outputs=[bubble_metric, scatter_plot],
        js=""" // this is to avoid resetting user scroll each time a plot is re-generated
        (benchmark, metric) => {
            let scrollY = window.scrollY;  
            const observer = new MutationObserver(() => {
                window.scrollTo(0, scrollY);
                observer.disconnect();
            });
            observer.observe(document.getElementById('full-width-plot'), { childList: true });
            return [benchmark, metric];  
        }
        """)

    bubble_metric.change(
        fn=on_metric_change,
        inputs=[bubble_benchmark, bubble_metric],
        outputs=[bubble_benchmark, scatter_plot],
        js=""" // this is to avoid resetting user scroll each time a plot is re-generated
        (benchmark, metric) => {
            let scrollY = window.scrollY;  
            const observer = new MutationObserver(() => {
                window.scrollTo(0, scrollY);
                observer.disconnect();
            });
            observer.observe(document.getElementById('full-width-plot'), { childList: true });
            return [benchmark, metric];  
        }
        """)
    

app.launch(allowed_paths=["logo.png", "hpai_logo_grad.png", "bsc-logo.png"])