File size: 54,557 Bytes
bd7463f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
import os
import torch
import numpy as np
from PIL import Image
import json
import gradio as gr
import torchvision.transforms as transforms
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
from transformers import CLIPProcessor, CLIPModel
from controlnet_aux import MLSDdetector
from diffusers import (
    ControlNetModel, 
    StableDiffusionControlNetPipeline, 
    StableDiffusionControlNetInpaintPipeline, 
    UniPCMultistepScheduler
)
from diffusers.utils import load_image
import cv2
import pickle
import faiss
import datetime
import glob

# 设置资源路径
RESOURCE_DIR = "resources"
MODELS_DIR = os.path.join(RESOURCE_DIR, "models")
IMAGES_DIR = os.path.join(RESOURCE_DIR, "images")
LABELS_DIR = os.path.join(RESOURCE_DIR, "labels")
OUTPUT_DIR = os.path.join(RESOURCE_DIR, "output")
GLOBAL_SAVE_DIR = os.path.join(OUTPUT_DIR, "global_style")  # 全局风格调整保存目录
LOCAL_SAVE_DIR = os.path.join(OUTPUT_DIR, "local_style")    # 局部风格调整保存目录
FEATURES_DIR = os.path.join(RESOURCE_DIR, "features")       # 图像特征存储目录
INDEX_PATH = os.path.join(FEATURES_DIR, "image_features.index")  # FAISS索引文件
METADATA_PATH = os.path.join(FEATURES_DIR, "image_metadata.pkl") # 图像元数据文件

# 确保输出目录存在
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(GLOBAL_SAVE_DIR, exist_ok=True)
os.makedirs(LOCAL_SAVE_DIR, exist_ok=True)
os.makedirs(FEATURES_DIR, exist_ok=True)

# 从本地JSON文件加载ADE20K数据集的标签信息
labels_path = os.path.join(LABELS_DIR, "ade20k-id2label.json")
if os.path.exists(labels_path):
    with open(labels_path, 'r') as f:
        LABELS = json.load(f)
else:
    # 如果本地文件不存在,则从网络获取
    import requests
    print("本地标签文件不存在,从网络获取...")
    LABELS = requests.get("https://huggingface.co./datasets/huggingface/label-files/raw/main/ade20k-id2label.json").json()
    # 确保目录存在
    os.makedirs(LABELS_DIR, exist_ok=True)
    # 保存到本地
    with open(labels_path, 'w') as f:
        json.dump(LABELS, f)

# 全局变量存储加载的模型
processor = None
mask2former_model = None
mlsd_processor = None
controlnet = None
global_pipe = None
inpaint_pipe = None
segmentation_result = None
clip_processor = None
clip_model = None
faiss_index = None
image_metadata = {}

def load_models():
    """加载所有需要的模型"""
    global processor, mask2former_model, mlsd_processor, controlnet, global_pipe, inpaint_pipe, clip_processor, clip_model, faiss_index, image_metadata
    
    # 加载 Mask2Former 模型
    print("加载 Mask2Former 模型...")
    processor = AutoImageProcessor.from_pretrained(
        "facebook/mask2former-swin-large-ade-semantic",
        cache_dir=MODELS_DIR
    )
    mask2former_model = Mask2FormerForUniversalSegmentation.from_pretrained(
        "facebook/mask2former-swin-large-ade-semantic",
        cache_dir=MODELS_DIR
    )
    
    # 加载 MLSD 检测器
    print("加载 MLSD 检测器...")
    mlsd_processor = MLSDdetector.from_pretrained(
        "lllyasviel/Annotators", 
        cache_dir=MODELS_DIR
    )
    
    # 加载 ControlNet 模型
    print("加载 ControlNet 模型...")
    controlnet = ControlNetModel.from_pretrained(
        "lllyasviel/control_v11p_sd15_mlsd", 
        torch_dtype=torch.float16,
        cache_dir=MODELS_DIR,
        use_safetensors=False
    )
    
    # 加载全局风格调整管道
    print("加载 Stable Diffusion 全局风格调整模型...")
    global_pipe = StableDiffusionControlNetPipeline.from_pretrained(
        "runwayml/stable-diffusion-v1-5", 
        controlnet=controlnet,
        torch_dtype=torch.float16,
        cache_dir=MODELS_DIR,
        use_safetensors=False
    )
    global_pipe.scheduler = UniPCMultistepScheduler.from_config(global_pipe.scheduler.config)
    global_pipe.enable_model_cpu_offload()
    
    # 加载局部风格调整管道
    print("加载 Stable Diffusion Inpainting 局部风格调整模型...")
    inpaint_pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
        "runwayml/stable-diffusion-inpainting",
        controlnet=controlnet,
        torch_dtype=torch.float16,
        cache_dir=MODELS_DIR,
        use_safetensors=False
    )
    inpaint_pipe.scheduler = UniPCMultistepScheduler.from_config(inpaint_pipe.scheduler.config)
    inpaint_pipe.enable_model_cpu_offload()
    
    # 加载 CLIP 模型用于图像特征提取
    print("加载 CLIP 模型...")
    clip_processor = CLIPProcessor.from_pretrained(
        "openai/clip-vit-base-patch32",
        cache_dir=MODELS_DIR
    )
    clip_model = CLIPModel.from_pretrained(
        "openai/clip-vit-base-patch32",
        cache_dir=MODELS_DIR
    )
    
    # 加载或创建FAISS索引
    load_or_create_index()
    
    # 默认使用标准注意力机制
    print("使用默认注意力机制")
    
    return "所有模型加载完成!"

def extract_image_features(image):
    """

    使用CLIP模型提取图像特征

    

    Args:

        image: PIL图像对象

    

    Returns:

        numpy数组,图像特征向量

    """
    global clip_processor, clip_model
    
    if clip_processor is None or clip_model is None:
        return None, "请先加载模型!"
    
    # 确保图像是PIL格式
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    # 使用CLIP处理图像
    with torch.no_grad():
        inputs = clip_processor(images=image, return_tensors="pt")
        image_features = clip_model.get_image_features(**inputs)
        
    # 归一化特征向量
    image_features = image_features / image_features.norm(dim=1, keepdim=True)
    
    # 转换为numpy数组
    features = image_features.cpu().numpy().astype('float32')
    
    return features, "特征提取成功"

def load_or_create_index():
    """

    加载现有的FAISS索引或创建新索引

    """
    global faiss_index, image_metadata
    
    # 检查索引文件是否存在
    if os.path.exists(INDEX_PATH) and os.path.exists(METADATA_PATH):
        print("加载现有的图像特征索引...")
        try:
            faiss_index = faiss.read_index(INDEX_PATH)
            with open(METADATA_PATH, 'rb') as f:
                image_metadata = pickle.load(f)
            print(f"成功加载索引,包含 {faiss_index.ntotal} 张图像")
        except Exception as e:
            print(f"加载索引失败: {e}")
            create_new_index()
    else:
        print("创建新的图像特征索引...")
        create_new_index()

def create_new_index():
    """

    创建新的FAISS索引并扫描现有图像

    """
    global faiss_index, image_metadata
    
    # 创建新的索引和元数据字典
    feature_dim = 512  # CLIP-ViT-B/32的特征维度
    faiss_index = faiss.IndexFlatIP(feature_dim)  # 使用内积相似度(余弦相似度)
    image_metadata = {}
    
    # 扫描并索引现有的图像
    index_existing_images()

def index_existing_images():
    """

    扫描并索引现有的设计方案图像

    """
    global faiss_index, image_metadata, clip_processor, clip_model
    
    if clip_processor is None or clip_model is None:
        print("CLIP模型未加载,无法索引图像")
        return
    
    # 获取所有保存的图像
    global_images = glob.glob(os.path.join(GLOBAL_SAVE_DIR, "*.png"))
    local_images = glob.glob(os.path.join(LOCAL_SAVE_DIR, "*.png"))
    all_images = global_images + local_images
    
    print(f"发现 {len(all_images)} 张现有图像")
    
    # 提取并索引每张图像的特征
    new_features = []
    new_metadata = []
    
    for img_path in all_images:
        # 检查是否已经索引过
        if img_path in image_metadata:
            continue
            
        try:
            # 加载图像
            img = Image.open(img_path)
            
            # 提取特征
            features, _ = extract_image_features(img)
            if features is not None:
                # 准备元数据
                metadata = {
                    "path": img_path,
                    "filename": os.path.basename(img_path),
                    "type": "global" if img_path in global_images else "local",
                    "timestamp": datetime.datetime.fromtimestamp(os.path.getmtime(img_path)).strftime('%Y-%m-%d %H:%M:%S')
                }
                
                # 解析文件名以提取额外信息
                filename = os.path.basename(img_path)
                parts = filename.split('_')
                if len(parts) >= 3:
                    metadata["room_type"] = parts[0]
                    metadata["style_theme"] = parts[1]
                
                # 添加到待索引列表
                new_features.append(features[0])
                new_metadata.append(metadata)
                
                # 更新元数据字典
                image_metadata[img_path] = metadata
        except Exception as e:
            print(f"处理图像 {img_path} 时出错: {e}")
    
    # 将新特征添加到索引
    if new_features:
        new_features = np.array(new_features).astype('float32')
        faiss_index.add(new_features)
        print(f"成功索引 {len(new_features)} 张新图像")
    
    # 保存索引和元数据
    save_index()

def save_index():
    """

    保存FAISS索引和元数据到文件

    """
    global faiss_index, image_metadata
    
    if faiss_index is not None and image_metadata:
        try:
            faiss.write_index(faiss_index, INDEX_PATH)
            with open(METADATA_PATH, 'wb') as f:
                pickle.dump(image_metadata, f)
            print(f"索引已保存,包含 {faiss_index.ntotal} 张图像")
        except Exception as e:
            print(f"保存索引失败: {e}")

def add_image_to_index(image_path, image=None):
    """

    将新图像添加到索引

    

    Args:

        image_path: 图像文件路径

        image: 可选,PIL图像对象

    """
    global faiss_index, image_metadata, clip_processor, clip_model
    
    if clip_processor is None or clip_model is None:
        print("CLIP模型未加载,无法添加图像到索引")
        return
    
    # 检查图像是否已经在索引中
    if image_path in image_metadata:
        print(f"图像 {image_path} 已在索引中")
        return
    
    try:
        # 加载图像(如果未提供)
        if image is None:
            image = Image.open(image_path)
        
        # 提取特征
        features, _ = extract_image_features(image)
        if features is not None:
            # 准备元数据
            is_global = "global_style" in image_path
            metadata = {
                "path": image_path,
                "filename": os.path.basename(image_path),
                "type": "global" if is_global else "local",
                "timestamp": datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            }
            
            # 解析文件名以提取额外信息
            filename = os.path.basename(image_path)
            parts = filename.split('_')
            if len(parts) >= 3:
                metadata["room_type"] = parts[0]
                metadata["style_theme"] = parts[1]
            
            # 添加到索引
            faiss_index.add(features)
            
            # 更新元数据字典
            image_metadata[image_path] = metadata
            
            # 保存索引和元数据
            save_index()
            
            print(f"图像 {image_path} 已添加到索引")
    except Exception as e:
        print(f"添加图像 {image_path} 到索引时出错: {e}")

def search_similar_images(query_image, top_k=8):
    """

    搜索与查询图像相似的图像

    

    Args:

        query_image: PIL图像对象或numpy数组

        top_k: 返回的最相似图像数量

    

    Returns:

        相似图像的路径列表和相似度分数

    """
    global faiss_index, image_metadata, clip_processor, clip_model
    
    if faiss_index is None or clip_processor is None or clip_model is None:
        return [], [], "请先加载模型!"
    
    if faiss_index.ntotal == 0:
        return [], [], "索引为空,请先生成并保存一些设计方案"
    
    # 提取查询图像的特征
    query_features, status = extract_image_features(query_image)
    if query_features is None:
        return [], [], status
    
    # 执行相似度搜索
    scores, indices = faiss_index.search(query_features, min(top_k, faiss_index.ntotal))
    
    # 获取结果图像的路径和元数据
    result_paths = []
    result_metadata = []
    
    for i, idx in enumerate(indices[0]):
        # 获取图像路径
        paths = [path for path, meta in image_metadata.items() if meta.get("index", -1) == idx]
        
        # 如果找不到对应的索引,则使用遍历方式查找
        if not paths:
            # 获取所有图像路径的列表
            all_paths = list(image_metadata.keys())
            if idx < len(all_paths):
                paths = [all_paths[idx]]
        
        if paths:
            result_paths.append(paths[0])
            meta = image_metadata.get(paths[0], {})
            meta["similarity"] = float(scores[0][i])  # 添加相似度分数
            result_metadata.append(meta)
    
    return result_paths, result_metadata, "搜索完成"

def get_mask_from_segmentation_map(seg_map):
    """从分割图生成掩码,每个类别对应一个掩码"""
    masks, labels, label_names = [], [], []
    
    # 定义ADE20K标签的中文翻译
    chinese_labels = {
        "wall": "墙壁", "building": "建筑", "sky": "天空", "floor": "地板", "tree": "树",
        "ceiling": "天花板", "road": "道路", "bed": "床", "windowpane": "窗户", "grass": "草地",
        "cabinet": "柜子", "sidewalk": "人行道", "person": "人", "earth": "土地", "door": "门",
        "table": "桌子", "mountain": "山", "plant": "植物", "curtain": "窗帘", "chair": "椅子",
        "car": "汽车", "water": "水", "painting": "画", "sofa": "沙发", "shelf": "架子",
        "house": "房子", "sea": "海", "mirror": "镜子", "rug": "地毯", "field": "田野",
        "armchair": "扶手椅", "seat": "座位", "fence": "栅栏", "desk": "书桌", "rock": "岩石",
        "wardrobe": "衣柜", "lamp": "灯", "bathtub": "浴缸", "railing": "栏杆", "cushion": "靠垫",
        "base": "底座", "box": "盒子", "column": "柱子", "signboard": "招牌", "chest of drawers": "抽屉柜",
        "counter": "柜台", "sand": "沙子", "sink": "水槽", "skyscraper": "摩天大楼", "fireplace": "壁炉",
        "refrigerator": "冰箱", "grandstand": "看台", "path": "小路", "stairs": "楼梯", "runway": "跑道",
        "case": "箱子", "pool table": "台球桌", "pillow": "枕头", "screen door": "纱门", "stairway": "阶梯",
        "river": "河流", "bridge": "桥", "bookcase": "书柜", "blind": "百叶窗", "coffee table": "咖啡桌",
        "toilet": "马桶", "flower": "花", "book": "书", "hill": "山丘", "bench": "长凳",
        "countertop": "台面", "stove": "炉子", "palm": "棕榈树", "kitchen island": "厨房中岛", "computer": "电脑",
        "swivel chair": "旋转椅", "boat": "船", "bar": "吧台", "arcade machine": "街机", "hovel": "小屋",
        "bus": "公交车", "towel": "毛巾", "light": "灯光", "truck": "卡车", "tower": "塔",
        "chandelier": "吊灯", "awning": "遮阳篷", "streetlight": "路灯", "booth": "摊位", "television receiver": "电视机",
        "airplane": "飞机", "dirt track": "泥路", "apparel": "服装", "pole": "杆子", "land": "陆地",
        "bannister": "栏杆", "escalator": "自动扶梯", "ottoman": "脚凳", "bottle": "瓶子", "buffet": "自助餐",
        "poster": "海报", "stage": "舞台", "van": "货车", "ship": "轮船", "fountain": "喷泉",
        "conveyer belt": "传送带", "canopy": "天篷", "washer": "洗衣机", "plaything": "玩具", "swimming pool": "游泳池",
        "stool": "凳子", "barrel": "桶", "basket": "篮子", "waterfall": "瀑布", "tent": "帐篷",
        "bag": "包", "minibike": "小型摩托车", "cradle": "摇篮", "oven": "烤箱", "ball": "球",
        "food": "食物", "step": "台阶", "tank": "水箱", "trade name": "商标", "microwave": "微波炉",
        "pot": "锅", "animal": "动物", "bicycle": "自行车", "lake": "湖", "dishwasher": "洗碗机",
        "screen": "屏幕", "blanket": "毯子", "sculpture": "雕塑", "hood": "引擎盖", "sconce": "壁灯",
        "vase": "花瓶", "traffic light": "交通灯", "tray": "托盘", "ashcan": "垃圾桶", "fan": "风扇",
        "pier": "码头", "crt screen": "显示器", "plate": "盘子", "monitor": "显示器", "bulletin board": "公告板",
        "shower": "淋浴", "radiator": "暖气片", "glass": "玻璃", "clock": "时钟", "flag": "旗帜"
    }
    
    for label in range(150):  # ADE20K数据集有150个类别
        mask = np.ones((seg_map.shape[0], seg_map.shape[1]), dtype=np.uint8)
        indices = (seg_map == label)
        mask[indices] = 0  # 将目标区域设为0,背景为1
        if indices.sum() > 0:  # 如果存在该类别
            masks.append(mask)
            labels.append(label)
            
            # 获取英文标签
            english_label = LABELS[str(label)]
            
            # 查找中文翻译,如果没有则使用英文
            chinese_label = chinese_labels.get(english_label, english_label)
            
            # 添加带有中文翻译的标签
            label_names.append(f"{label}: {english_label} - {chinese_label}")
    
    print(f"创建了 {len(masks)} 个掩码")
    for idx, label in enumerate(labels):
        print(f"索引: {idx}\t类别ID: {label}\t标签: {LABELS[str(label)]}")
    
    return masks, labels, label_names

def segment_image(image):
    """对图像进行语义分割"""
    global segmentation_result, processor, mask2former_model, mlsd_processor
    
    if processor is None or mask2former_model is None or mlsd_processor is None:
        return None, "请先加载模型!", []
    
    # 调整图像大小
    image_pil = Image.fromarray(image) if not isinstance(image, Image.Image) else image
    image_pil = image_pil.resize((768, 512))
    
    # 进行语义分割
    inputs = processor(images=[image_pil], return_tensors="pt")
    outputs = mask2former_model(**inputs)
    predicted_semantic_map = processor.post_process_semantic_segmentation(
        outputs, target_sizes=[image_pil.size[::-1]]
    )[0]
    
    # 生成分割掩码
    masks, labels, label_names = get_mask_from_segmentation_map(predicted_semantic_map)
    
    # 保存分割结果供后续使用
    segmentation_result = {
        "image": image_pil,
        "masks": masks,
        "labels": labels,
        "label_names": label_names,
        "semantic_map": predicted_semantic_map
    }
    
    # 生成控制图像
    control_image = mlsd_processor(image_pil)
    
    print(f"分割完成,找到 {len(label_names)} 个区域: {label_names}")
    
    return control_image, f"图像分割完成,找到 {len(label_names)} 个可调整区域", label_names

def adjust_global_style(prompt, negative_prompt, room_type, style_theme, num_steps, guidance_scale, num_images=4):
    """全局风格调整"""
    global segmentation_result, global_pipe, mlsd_processor
    
    if segmentation_result is None:
        return [None] * num_images + ["请先进行图像分割!"]
    
    if global_pipe is None or mlsd_processor is None:
        return [None] * num_images + ["请先加载模型!"]
    
    # 获取原始图像
    image = segmentation_result["image"]
    
    # 生成控制图像
    control_image = mlsd_processor(image)
    
    # 提取英文部分(去除中文描述)
    room_type = room_type.split(" - ")[0]
    style_theme = style_theme.split(" - ")[0]
    
    # 构建完整提示词,结合房间类型和风格主题
    full_prompt = f"A {style_theme} style {room_type}, {prompt}"
    
    # 设置生成参数
    prompts = [full_prompt] * num_images
    negative_prompts = [negative_prompt] * num_images
    generator = [torch.Generator(device="cuda").manual_seed(int(i)) for i in np.random.randint(1000, size=num_images)]
    
    # 执行图像生成
    output = global_pipe(
        prompts,
        image=control_image,  # 直接使用控制图像
        negative_prompt=negative_prompts,
        num_inference_steps=num_steps,
        generator=generator,
        guidance_scale=guidance_scale
    )
    
    # 保存生成的图像到临时位置
    for i, img in enumerate(output.images):
        img.save(os.path.join(OUTPUT_DIR, f"global_style_{i+1}.png"))
    
    # 保存生成的图像到管道对象,以便后续保存
    global_pipe._last_images = output.images
    
    # 返回单独的图像和状态文本,而不是列表+文本
    return output.images[0], output.images[1], output.images[2], output.images[3], "全局风格调整完成!"

def adjust_local_style(prompt, negative_prompt, mask_label, room_type, style_theme, num_steps, guidance_scale, num_images=4):
    """局部风格调整(Inpainting)"""
    global segmentation_result, inpaint_pipe, mlsd_processor
    
    if segmentation_result is None:
        return [None] * num_images + ["请先进行图像分割!"]
    
    if inpaint_pipe is None or mlsd_processor is None:
        return [None] * num_images + ["请先加载模型!"]
    
    # 获取原始图像和选定的掩码
    image = segmentation_result["image"]
    masks = segmentation_result["masks"]
    labels = segmentation_result["labels"]
    label_names = segmentation_result["label_names"]
    
    # 找到选定标签对应的掩码索引
    try:
        if mask_label is None or mask_label == "":
            return [None] * num_images + ["请选择要调整的区域"]
            
        # 找到选中的标签在label_names中的索引
        mask_id = label_names.index(mask_label)
    except (ValueError, IndexError, AttributeError):
        return [None] * num_images + ["无效的区域选择,请重新选择"]
    
    # 生成控制图像
    control_image = mlsd_processor(image)
    
    # 将控制图像和原始图像混合,创建更自然的控制引导
    control_tensor = transforms.ToTensor()(control_image)
    image_tensor = transforms.ToTensor()(image)
    mixed_control_tensor = control_tensor * 0.5 + image_tensor * 0.5
    mixed_control_image = transforms.ToPILImage()(mixed_control_tensor)
    
    # 处理掩码并创建用于修复的遮罩图像
    mask = torch.Tensor(masks[mask_id])
    object_mask = 1 - mask  # 反转掩码,0变为1,1变为0
    mask_image = transforms.ToPILImage()(object_mask.unsqueeze(0))
    
    # 提取英文部分(去除中文描述)
    room_type = room_type.split(" - ")[0]
    style_theme = style_theme.split(" - ")[0]
    
    # 构建完整提示词,结合房间类型和风格主题
    full_prompt = f"A {style_theme} style {room_type}, {prompt}"
    
    # 设置生成参数
    prompts = [full_prompt] * num_images
    negative_prompts = [negative_prompt] * num_images
    generator = [torch.Generator(device="cuda").manual_seed(int(i)) for i in np.random.randint(1000, size=num_images)]
    
    # 执行图像生成
    output = inpaint_pipe(
        prompts,
        image=image,
        mask_image=mask_image,
        control_image=mixed_control_image,
        negative_prompt=negative_prompts,
        num_inference_steps=num_steps,
        generator=generator,
        controlnet_conditioning_scale=0.7,
        guidance_scale=guidance_scale
    )
    
    # 保存生成的图像到临时位置
    for i, img in enumerate(output.images):
        img.save(os.path.join(OUTPUT_DIR, f"local_style_{i+1}.png"))
    
    # 保存生成的图像到管道对象,以便后续保存
    inpaint_pipe._last_images = output.images
    
    # 返回单独的图像和状态文本,而不是列表+文本
    return output.images[0], output.images[1], output.images[2], output.images[3], "局部风格调整完成!"

# 显示选定区域的掩码
def display_selected_mask(mask_label):
    """根据选择的区域标签显示对应的掩码图像"""
    global segmentation_result
    
    if segmentation_result is None:
        return None, "请先进行图像分割!"
    
    if mask_label is None or mask_label == "":
        return None, "请选择要调整的区域"
    
    try:
        # 获取掩码和标签
        masks = segmentation_result["masks"]
        label_names = segmentation_result["label_names"]
        image = segmentation_result["image"]
        
        # 找到选中的标签在label_names中的索引
        mask_id = label_names.index(mask_label)
        
        # 获取对应的掩码
        mask = masks[mask_id]
        
        # 创建彩色掩码图像以便更好地可视化
        # 创建RGB图像,将选中区域标记为红色
        mask_rgb = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8)
        mask_rgb[mask == 0] = [255, 0, 0]  # 红色表示选中的区域
        
        # 将原始图像和掩码混合,使掩码半透明
        image_np = np.array(image)
        image_np = cv2.resize(image_np, (mask.shape[1], mask.shape[0]))
        
        # 创建混合图像
        alpha = 0.5
        mask_overlay = cv2.addWeighted(image_np, 1 - alpha, mask_rgb, alpha, 0)
        
        # 将NumPy数组转换为PIL图像
        mask_image = Image.fromarray(mask_overlay)
        
        return mask_image, f"已选择区域: {mask_label}"
    except (ValueError, IndexError, AttributeError) as e:
        print(f"显示掩码时出错: {e}")
        return None, f"无法显示所选区域: {str(e)}"

# 保存设计方案
def save_global_style(image_indices, room_type, style_theme):
    """保存全局风格调整的设计方案"""
    global global_pipe
    
    if global_pipe is None:
        return "请先加载模型!"
    
    if not hasattr(global_pipe, "_last_images") or not global_pipe._last_images:
        return "没有可保存的图像!"
    
    # 提取房间类型和风格主题的英文部分
    room_type_en = room_type.split(" - ")[0]
    style_theme_en = style_theme.split(" - ")[0]
    
    # 获取当前保存目录中的文件数量,用于自增编号
    existing_files = [f for f in os.listdir(GLOBAL_SAVE_DIR) if f.startswith(f"{room_type_en}_{style_theme_en}_")]
    start_index = len(existing_files) + 1
    
    saved_paths = []
    for i, idx in enumerate(image_indices):
        if 0 <= idx - 1 < len(global_pipe._last_images):
            image = global_pipe._last_images[idx - 1]
            
            # 构建简洁的文件名: room_style_number.png
            filename = f"{room_type_en}_{style_theme_en}_{start_index + i}.png"
            save_path = os.path.join(GLOBAL_SAVE_DIR, filename)
            
            # 保存图像
            image.save(save_path)
            saved_paths.append(save_path)
            
            # 将图像添加到索引
            add_image_to_index(save_path, image)
    
    if saved_paths:
        return f"已保存 {len(saved_paths)} 张设计方案到 {GLOBAL_SAVE_DIR}"
    else:
        return "没有保存任何图像"

def save_local_style(image_indices, room_type, style_theme, mask_label):
    """保存局部风格调整的设计方案"""
    global inpaint_pipe
    
    if inpaint_pipe is None:
        return "请先加载模型!"
    
    if not hasattr(inpaint_pipe, "_last_images") or not inpaint_pipe._last_images:
        return "没有可保存的图像!"
    
    # 提取房间类型和风格主题的英文部分
    room_type_en = room_type.split(" - ")[0]
    style_theme_en = style_theme.split(" - ")[0]
    
    # 提取区域标签
    region_label = "unknown"
    if mask_label:
        try:
            region_label = mask_label.split(":")[1].split("-")[0].strip()
        except:
            pass
    
    # 获取当前保存目录中的文件数量,用于自增编号
    existing_files = [f for f in os.listdir(LOCAL_SAVE_DIR) if f.startswith(f"{room_type_en}_{style_theme_en}_{region_label}_")]
    start_index = len(existing_files) + 1
    
    saved_paths = []
    for i, idx in enumerate(image_indices):
        if 0 <= idx - 1 < len(inpaint_pipe._last_images):
            image = inpaint_pipe._last_images[idx - 1]
            
            # 构建简洁的文件名: room_style_region_number.png
            filename = f"{room_type_en}_{style_theme_en}_{region_label}_{start_index + i}.png"
            save_path = os.path.join(LOCAL_SAVE_DIR, filename)
            
            # 保存图像
            image.save(save_path)
            saved_paths.append(save_path)
            
            # 将图像添加到索引
            add_image_to_index(save_path, image)
    
    if saved_paths:
        return f"已保存 {len(saved_paths)} 张设计方案到 {LOCAL_SAVE_DIR}"
    else:
        return "没有保存任何图像"

def perform_image_search(query_image, top_k=8):
    """

    执行图像相似度搜索并返回结果

    

    Args:

        query_image: 查询图像

        top_k: 返回的结果数量

    

    Returns:

        相似图像列表、相似度分数列表和状态信息

    """
    # 执行相似度搜索
    result_paths, result_metadata, status = search_similar_images(query_image, top_k)
    
    if not result_paths:
        return [], [], status
    
    # 加载结果图像和相似度分数
    result_images = []
    similarity_scores = []
    
    for i, path in enumerate(result_paths):
        try:
            img = Image.open(path)
            result_images.append(img)
            
            # 获取相似度分数(转换为百分比)
            similarity = result_metadata[i].get("similarity", 0)
            similarity_percentage = f"相似度: {similarity * 100:.1f}%"
            similarity_scores.append(similarity_percentage)
        except Exception as e:
            print(f"加载图像 {path} 时出错: {e}")
    
    # 确保只返回请求的数量
    if len(result_images) > top_k:
        result_images = result_images[:top_k]
        similarity_scores = similarity_scores[:top_k]
    
    return result_images, similarity_scores, status

# 创建Gradio界面
def create_interface():
    with gr.Blocks(title="AI房间设计助手", css="""

        #region-dropdown .wrap {

            max-height: 300px;

            overflow-y: auto;

            z-index: 999;

            position: relative;

        }

        #region-dropdown .wrap::-webkit-scrollbar {

            width: 10px;

        }

        #region-dropdown .wrap::-webkit-scrollbar-track {

            background: #f1f1f1;

        }

        #region-dropdown .wrap::-webkit-scrollbar-thumb {

            background: #888;

        }

        #region-dropdown .wrap::-webkit-scrollbar-thumb:hover {

            background: #555;

        }

        .similar-image {

            border: 1px solid #ddd;

            border-radius: 8px;

            padding: 5px;

            transition: transform 0.2s;

        }

        .similar-image:hover {

            transform: scale(1.05);

            box-shadow: 0 0 10px rgba(0,0,0,0.2);

        }

        /* 相似图像结果滚动窗口样式 */

        .similar-results-container {

            max-height: 600px;

            overflow-y: auto;

            padding: 10px;

            border: 1px solid #eee;

            border-radius: 8px;

            background-color: #f9f9f9;

        }

        .similar-results-container::-webkit-scrollbar {

            width: 10px;

        }

        .similar-results-container::-webkit-scrollbar-track {

            background: #f1f1f1;

            border-radius: 8px;

        }

        .similar-results-container::-webkit-scrollbar-thumb {

            background: #888;

            border-radius: 8px;

        }

        .similar-results-container::-webkit-scrollbar-thumb:hover {

            background: #555;

        }

        .result-item {

            margin-bottom: 15px;

        }

    """) as app:
        gr.Markdown("# AI房间设计助手")
        gr.Markdown("## 使用ControlNet和Stable Diffusion进行房间风格调整")
        
        # 定义房间类型和风格主题选项
        room_types = [
            "living room - 客厅", 
            "bedroom - 卧室", 
            "kitchen - 厨房", 
            "bathroom - 浴室", 
            "dining room - 餐厅", 
            "office - 办公室", 
            "study room - 书房", 
            "children's room - 儿童房"
        ]
        
        style_themes = [
            "modern - 现代", 
            "minimalist - 极简", 
            "Scandinavian - 北欧", 
            "industrial - 工业风", 
            "rustic - 乡村", 
            "traditional - 传统", 
            "contemporary - 当代", 
            "mid-century modern - 中世纪现代", 
            "bohemian - 波西米亚", 
            "coastal - 海岸风", 
            "farmhouse - 农舍", 
            "luxury - 奢华"
        ]
        
        # 定义提示词预设
        prompt_presets = {
            "简约舒适": "clean lines, comfortable seating, natural light, warm tones, simple decor",
            "奢华典雅": "elegant furnishings, crystal chandelier, marble surfaces, plush seating, gold accents",
            "自然原木": "wooden furniture, plants, natural materials, earth tones, organic textures",
            "明亮通透": "large windows, white walls, light wood floors, minimal furniture, airy space",
            "复古怀旧": "vintage furniture, retro color palette, antique accessories, classic patterns",
            "工业风格": "exposed brick, metal fixtures, concrete floors, raw materials, minimal decor",
            "温馨家庭": "comfortable seating, soft textiles, family photos, warm lighting, cozy atmosphere",
            "艺术创意": "colorful accents, unique art pieces, creative lighting, bold patterns, artistic elements"
        }
        
        # 定义负面提示词预设
        negative_prompt_presets = {
            "标准负面提示词": "cluttered, dark, oversaturated, poor quality, blurry, unrealistic",
            "避免过度装饰": "over decorated, cluttered, busy, chaotic, messy, disorganized",
            "避免昏暗效果": "dark, gloomy, dim, shadowy, poorly lit, murky",
            "避免不真实效果": "unrealistic, cartoon, anime, illustration, painting, drawing, 3d render",
            "避免低质量": "poor quality, low resolution, blurry, noisy, distorted, deformed",
            "避免人物": "people, person, human, face, hands, fingers",
            "避免文字": "text, letters, words, signage, labels, logos",
            "避免奇怪构图": "cropped, cut off, weird angle, distorted perspective, bad composition"
        }
        
        # 模型加载按钮
        with gr.Row():
            load_models_btn = gr.Button("加载模型")
            model_status = gr.Textbox(label="模型状态", value="未加载")
        
        # 创建选项卡界面
        with gr.Tabs() as tabs:
            # 全局风格调整选项卡
            with gr.TabItem("全局风格调整"):
                with gr.Row():
                    with gr.Column(scale=1):
                        # 输入区域
                        input_image = gr.Image(label="输入图像", type="pil")
                        segment_btn = gr.Button("分析图像结构")
                        
                        # 参数设置
                        room_type = gr.Dropdown(label="房间类型", choices=room_types, value="living room - 客厅")
                        style_theme = gr.Dropdown(label="主题风格", choices=style_themes, value="modern - 现代")
                        
                        # 提示词预设和输入
                        prompt_preset = gr.Dropdown(label="提示词预设", choices=list(prompt_presets.keys()), value="简约舒适")
                        prompt = gr.Textbox(label="提示词", value=prompt_presets["简约舒适"])
                        
                        # 负面提示词预设和输入
                        negative_prompt_preset = gr.Dropdown(label="负面提示词预设", choices=list(negative_prompt_presets.keys()), value="标准负面提示词")
                        negative_prompt = gr.Textbox(label="负面提示词", value=negative_prompt_presets["标准负面提示词"])
                        
                        num_steps = gr.Slider(label="推理步数", minimum=10, maximum=50, step=1, value=30)
                        guidance_scale = gr.Slider(label="引导比例", minimum=1.0, maximum=15.0, step=0.1, value=7.5)
                        
                        # 生成按钮
                        generate_btn = gr.Button("生成设计方案")
                    
                    with gr.Column(scale=1):
                        # 预览区域
                        control_image = gr.Image(label="结构控制图像")
                        status_text = gr.Textbox(label="状态信息")
                        
                        # 结果展示区域
                        gr.Markdown("### 设计方案")
                        with gr.Row():
                            output_images = [gr.Image(label=f"方案 {i+1}") for i in range(2)]
                        with gr.Row():
                            output_images.extend([gr.Image(label=f"方案 {i+3}") for i in range(2)])
                        
                        # 保存按钮区域
                        gr.Markdown("### 保存设计方案")
                        with gr.Row():
                            save_image_index = gr.CheckboxGroup(label="选择要保存的方案", choices=["方案 1", "方案 2", "方案 3", "方案 4"], value=[])
                            save_btn = gr.Button("保存选中的设计方案")
                        save_status = gr.Textbox(label="保存状态")
            
            # 局部风格调整选项卡
            with gr.TabItem("局部风格调整"):
                with gr.Row():
                    with gr.Column(scale=1):
                        # 输入区域
                        input_image_local = gr.Image(label="输入图像", type="pil")
                        segment_btn_local = gr.Button("分析图像结构")
                        
                        # 参数设置
                        region_choices = gr.Textbox(visible=False)  # 隐藏的文本框用于存储区域选项
                        with gr.Row(elem_id="region-dropdown"):
                            mask_label_local = gr.Dropdown(label="选择调整区域", choices=[], interactive=True)
                        room_type_local = gr.Dropdown(label="房间类型", choices=room_types, value="living room - 客厅")
                        style_theme_local = gr.Dropdown(label="主题风格", choices=style_themes, value="modern - 现代")
                        
                        # 提示词预设和输入
                        prompt_preset_local = gr.Dropdown(label="提示词预设", choices=list(prompt_presets.keys()), value="简约舒适")
                        prompt_local = gr.Textbox(label="提示词", value=prompt_presets["简约舒适"])
                        
                        # 负面提示词预设和输入
                        negative_prompt_preset_local = gr.Dropdown(label="负面提示词预设", choices=list(negative_prompt_presets.keys()), value="标准负面提示词")
                        negative_prompt_local = gr.Textbox(label="负面提示词", value=negative_prompt_presets["标准负面提示词"])
                        
                        num_steps_local = gr.Slider(label="推理步数", minimum=10, maximum=50, step=1, value=30)
                        guidance_scale_local = gr.Slider(label="引导比例", minimum=1.0, maximum=15.0, step=0.1, value=7.5)
                        
                        # 生成按钮
                        generate_btn_local = gr.Button("生成设计方案")
                        update_regions_btn = gr.Button("更新区域列表", visible=False)  # 隐藏的按钮用于触发更新
                    
                    with gr.Column(scale=1):
                        # 预览区域
                        control_image_local = gr.Image(label="区域掩码图像")
                        status_text_local = gr.Textbox(label="状态信息")
                        
                        # 结果展示区域
                        gr.Markdown("### 设计方案")
                        with gr.Row():
                            output_images_local = [gr.Image(label=f"方案 {i+1}") for i in range(2)]
                        with gr.Row():
                            output_images_local.extend([gr.Image(label=f"方案 {i+3}") for i in range(2)])
                        
                        # 保存按钮区域
                        gr.Markdown("### 保存设计方案")
                        with gr.Row():
                            save_image_index_local = gr.CheckboxGroup(label="选择要保存的方案", choices=["方案 1", "方案 2", "方案 3", "方案 4"], value=[])
                            save_btn_local = gr.Button("保存选中的设计方案")
                        save_status_local = gr.Textbox(label="保存状态")
            
            # 图像相似性搜索选项卡
            with gr.TabItem("相似图像搜索"):
                with gr.Row():
                    with gr.Column(scale=1):
                        # 输入区域
                        gr.Markdown("### 上传参考图像")
                        reference_image = gr.Image(label="参考图像", type="pil")
                        
                        # 搜索参数
                        num_results = gr.Slider(label="搜索结果数量", minimum=2, maximum=8, step=2, value=4)
                        
                        # 搜索按钮
                        search_btn = gr.Button("搜索相似图像")
                        search_status = gr.Textbox(label="搜索状态")
                        
                        # 索引管理
                        gr.Markdown("### 索引管理")
                        rebuild_index_btn = gr.Button("重建图像索引")
                        index_status = gr.Textbox(label="索引状态")
                    
                    with gr.Column(scale=1):
                        # 结果展示区域
                        gr.Markdown("### 相似图像结果")
                        
                        # 创建一个带滚动条的容器来动态显示结果
                        with gr.Column(elem_classes="similar-results-container") as result_container:
                            # 创建所有可能的结果行(最多8个结果,2x2布局)
                            # 第一行(结果1-2)
                            with gr.Row(visible=True, elem_classes="result-item") as row1:
                                similar_images_row1 = [gr.Image(label=f"结果 {i+1}", elem_classes="similar-image") for i in range(2)]
                            with gr.Row(visible=True, elem_classes="result-item") as score_row1:
                                similarity_scores_row1 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
                            
                            # 第二行(结果3-4)
                            with gr.Row(visible=True, elem_classes="result-item") as row2:
                                similar_images_row2 = [gr.Image(label=f"结果 {i+3}", elem_classes="similar-image") for i in range(2)]
                            with gr.Row(visible=True, elem_classes="result-item") as score_row2:
                                similarity_scores_row2 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
                            
                            # 第三行(结果5-6)
                            with gr.Row(visible=True, elem_classes="result-item") as row3:
                                similar_images_row3 = [gr.Image(label=f"结果 {i+5}", elem_classes="similar-image") for i in range(2)]
                            with gr.Row(visible=True, elem_classes="result-item") as score_row3:
                                similarity_scores_row3 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
                            
                            # 第四行(结果7-8)
                            with gr.Row(visible=True, elem_classes="result-item") as row4:
                                similar_images_row4 = [gr.Image(label=f"结果 {i+7}", elem_classes="similar-image") for i in range(2)]
                            with gr.Row(visible=True, elem_classes="result-item") as score_row4:
                                similarity_scores_row4 = [gr.Textbox(label="相似度", elem_classes="similarity-score") for _ in range(2)]
                        
                        # 合并所有结果图像组件和相似度分数组件
                        similar_images = similar_images_row1 + similar_images_row2 + similar_images_row3 + similar_images_row4
                        similarity_scores = similarity_scores_row1 + similarity_scores_row2 + similarity_scores_row3 + similarity_scores_row4
                        
                        # 保存所有行的引用,用于控制可见性
                        image_rows = [row1, row2, row3, row4]
                        score_rows = [score_row1, score_row2, score_row3, score_row4]
        
        # 设置事件处理
        load_models_btn.click(load_models, inputs=[], outputs=[model_status])
        
        # 全局风格调整事件
        segment_btn.click(
            segment_image, 
            inputs=[input_image], 
            outputs=[control_image, status_text, region_choices]
        )
        
        # 提示词预设选择事件
        def update_prompt(preset_name):
            return prompt_presets.get(preset_name, "")
            
        def update_negative_prompt(preset_name):
            return negative_prompt_presets.get(preset_name, "")
            
        prompt_preset.change(
            update_prompt,
            inputs=[prompt_preset],
            outputs=[prompt]
        )
        
        negative_prompt_preset.change(
            update_negative_prompt,
            inputs=[negative_prompt_preset],
            outputs=[negative_prompt]
        )
        
        # 局部风格调整的提示词预设选择事件
        prompt_preset_local.change(
            update_prompt,
            inputs=[prompt_preset_local],
            outputs=[prompt_local]
        )
        
        negative_prompt_preset_local.change(
            update_negative_prompt,
            inputs=[negative_prompt_preset_local],
            outputs=[negative_prompt_local]
        )
        
        generate_btn.click(
            adjust_global_style, 
            inputs=[prompt, negative_prompt, room_type, style_theme, num_steps, guidance_scale], 
            outputs=output_images + [status_text]
        )
        
        # 局部风格调整事件
        # 分割图像并存储区域列表
        def process_segmentation_local(image):
            control_img, status, label_choices = segment_image(image)
            # 将选项列表转换为字符串存储
            choices_str = "|||".join(label_choices)
            return control_img, status, choices_str
            
        # 更新下拉菜单选项
        def update_dropdown(choices_str):
            if not choices_str:
                return gr.Dropdown(choices=[])
            choices = choices_str.split("|||")
            return gr.Dropdown(choices=choices)
            
        segment_btn_local.click(
            process_segmentation_local, 
            inputs=[input_image_local], 
            outputs=[control_image_local, status_text_local, region_choices]
        )
        
        # 使用region_choices更新下拉菜单
        region_choices.change(
            update_dropdown,
            inputs=[region_choices],
            outputs=[mask_label_local]
        )
        
        # 当用户选择区域时,更新掩码图像
        mask_label_local.change(
            display_selected_mask,
            inputs=[mask_label_local],
            outputs=[control_image_local, status_text_local]
        )
        
        generate_btn_local.click(
            adjust_local_style, 
            inputs=[prompt_local, negative_prompt_local, mask_label_local, room_type_local, style_theme_local, num_steps_local, guidance_scale_local], 
            outputs=output_images_local + [status_text_local]
        )
        
        # 保存设计方案事件
        def process_save_global(image_indices, room_type, style_theme):
            # 从选择的方案中提取索引号
            indices = [int(idx.split(" ")[1]) for idx in image_indices]
            return save_global_style(indices, room_type, style_theme)
            
        def process_save_local(image_indices, room_type, style_theme, mask_label):
            # 从选择的方案中提取索引号
            indices = [int(idx.split(" ")[1]) for idx in image_indices]
            return save_local_style(indices, room_type, style_theme, mask_label)
        
        # 全局风格调整保存按钮事件
        save_btn.click(
            process_save_global,
            inputs=[save_image_index, room_type, style_theme],
            outputs=[save_status]
        )
        
        # 局部风格调整保存按钮事件
        save_btn_local.click(
            process_save_local,
            inputs=[save_image_index_local, room_type_local, style_theme_local, mask_label_local],
            outputs=[save_status_local]
        )
        
        # 图像相似性搜索事件
        def handle_image_search(query_image, num_results):
            """处理图像相似性搜索请求"""
            if query_image is None:
                # 返回空结果列表,每个图像组件对应一个None
                empty_results = [None] * 8  # 固定返回8个None,对应8个图像组件
                empty_scores = [""] * 8     # 固定返回8个空字符串,对应8个相似度标签
                
                # 隐藏所有额外结果行
                for row in image_rows[1:]:
                    row.update(visible=False)
                for row in score_rows[1:]:
                    row.update(visible=False)
                
                return empty_results + empty_scores + ["请先上传参考图像"]
            
            # 执行相似度搜索,只获取用户请求的数量
            result_images, similarity_scores, status = perform_image_search(query_image, int(num_results))
            
            # 打印调试信息
            print(f"请求的结果数量: {num_results}")
            print(f"实际返回的结果数量: {len(result_images)}")
            
            # 清空所有结果
            padded_results = [None] * 8
            padded_scores = [""] * 8
            
            # 填充实际结果
            for i in range(min(len(result_images), 8)):
                padded_results[i] = result_images[i]
                padded_scores[i] = similarity_scores[i]
            
            # 控制结果行的可见性
            for i, row in enumerate(image_rows):
                row.update(visible=i < len(result_images))
            for i, row in enumerate(score_rows):
                row.update(visible=i < len(result_images))
            
            # 返回图像列表、相似度分数列表和状态文本
            return padded_results + padded_scores + [f"找到 {len(result_images)} 个相似图像"]
        
        # 绑定搜索按钮事件
        search_btn.click(
            handle_image_search,
            inputs=[reference_image, num_results],
            outputs=similar_images + similarity_scores + [search_status]
        )
        
        # 重建索引事件
        def rebuild_image_index():
            """重建图像特征索引"""
            global faiss_index, image_metadata
            
            # 创建新的索引
            create_new_index()
            
            # 返回索引状态
            if faiss_index is not None:
                return f"索引重建完成,共索引了 {faiss_index.ntotal} 张图像"
            else:
                return "索引重建失败"
        
        # 绑定重建索引按钮事件
        rebuild_index_btn.click(
            rebuild_image_index,
            inputs=[],
            outputs=[index_status]
        )
    
    return app

# 启动应用
if __name__ == "__main__":
    app = create_interface()
    app.launch(share=True)