import os from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Get the Hugging Face token from the environment variable hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN") # Model name model_name = "meta-llama/Llama-3.2-3B-Instruct" # Load the model and tokenizer with the token tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) def predict(input_text): # Tokenize input and generate text inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create a Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Textbox(label="Input Text"), outputs=gr.Textbox(label="Generated Output"), title="Meta-LLaMA-3.1-8B-Instruct", description="Generate text using the meta-llama/Llama-3.1-8B-Instruct model." ) # Launch the interface interface.launch()