|
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
|
|
from sentence_transformers import SentenceTransformer
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from PIL import Image
|
|
import requests
|
|
import os
|
|
import json
|
|
import math
|
|
import re
|
|
import pandas as pd
|
|
import numpy as np
|
|
from omeka_s_api_client import OmekaSClient,OmekaSClientError
|
|
from typing import List, Dict, Any, Union
|
|
import io
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
load_dotenv(os.path.join(os.getcwd(), ".env"))
|
|
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
|
|
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
|
|
|
|
|
text_model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True, token=HF_TOKEN)
|
|
|
|
def image_url_to_pil(url: str, max_size=(512, 512)) -> Image:
|
|
"""
|
|
Ex usage : image_blobs = df["image_url"].apply(image_url_to_pil).tolist()
|
|
"""
|
|
response = requests.get(url, stream=True, timeout=5)
|
|
response.raise_for_status()
|
|
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
|
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
|
return image
|
|
|
|
def generate_img_embed(images_urls, batch_size=20):
|
|
"""Generate image embeddings in batches to manage memory usage.
|
|
|
|
Args:
|
|
images_urls (list): List of image URLs
|
|
batch_size (int): Number of images to process at once
|
|
"""
|
|
all_embeddings = []
|
|
|
|
for i in range(0, len(images_urls), batch_size):
|
|
batch_urls = images_urls[i:i + batch_size]
|
|
images = [image_url_to_pil(image_url) for image_url in batch_urls]
|
|
inputs = processor(images, return_tensors="pt")
|
|
img_emb = vision_model(**inputs).last_hidden_state
|
|
img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
|
|
all_embeddings.append(img_embeddings.detach().numpy())
|
|
|
|
return np.vstack(all_embeddings)
|
|
|
|
def generate_text_embed(sentences: List, batch_size=64):
|
|
"""Generate text embeddings in batches to manage memory usage.
|
|
|
|
Args:
|
|
sentences (List): List of text strings to encode
|
|
batch_size (int): Number of sentences to process at once
|
|
"""
|
|
all_embeddings = []
|
|
|
|
for i in range(0, len(sentences), batch_size):
|
|
batch_sentences = sentences[i:i + batch_size]
|
|
embeddings = text_model.encode(batch_sentences)
|
|
all_embeddings.append(embeddings)
|
|
|
|
return np.vstack(all_embeddings)
|
|
|
|
def add_concatenated_text_field_exclude_keys(item_dict, keys_to_exclude=None, text_field_key="text", pair_separator=" - "):
|
|
if not isinstance(item_dict, dict):
|
|
raise TypeError("Input must be a dictionary.")
|
|
if keys_to_exclude is None:
|
|
keys_to_exclude = set()
|
|
else:
|
|
keys_to_exclude = set(keys_to_exclude)
|
|
|
|
|
|
keys_to_exclude.add(text_field_key)
|
|
|
|
formatted_pairs = []
|
|
for key, value in item_dict.items():
|
|
|
|
if key in keys_to_exclude:
|
|
continue
|
|
|
|
|
|
is_empty_or_invalid = False
|
|
if value is None: is_empty_or_invalid = True
|
|
elif isinstance(value, float) and math.isnan(value): is_empty_or_invalid = True
|
|
elif isinstance(value, (str, list, tuple, dict)) and len(value) == 0: is_empty_or_invalid = True
|
|
|
|
|
|
if not is_empty_or_invalid:
|
|
formatted_pairs.append(f"{str(key)}: {str(value)}")
|
|
|
|
concatenated_text = f"search_document: {pair_separator.join(formatted_pairs)}"
|
|
item_dict[text_field_key] = concatenated_text
|
|
return item_dict
|
|
|
|
def prepare_df_atlas(df: pd.DataFrame, id_col='id', images_col='images_urls'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if id_col not in df.columns:
|
|
df[id_col] = [f'{i}' for i in range(len(df))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df[images_col] = df[images_col].apply(lambda x: x[0] if isinstance(x, list) else x)
|
|
|
|
|
|
for col in df.columns:
|
|
df[col] = df[col].astype(str)
|
|
|
|
return df
|
|
|
|
def remove_key_value_from_dict(list_of_dict, key_to_remove):
|
|
new_list = []
|
|
for dictionary in list_of_dict:
|
|
new_dict = dictionary.copy()
|
|
if key_to_remove in new_dict:
|
|
del new_dict[key_to_remove]
|
|
new_list.append(new_dict)
|
|
return new_list
|
|
|
|
def remove_key_value_from_dict(input_dict, key_to_remove='text'):
|
|
if not isinstance(input_dict, dict):
|
|
raise TypeError("Input must be a dictionary.")
|
|
|
|
if key_to_remove in input_dict:
|
|
del input_dict[key_to_remove]
|
|
|
|
return input_dict |