File size: 11,777 Bytes
98fc0a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import dash
from dash import dcc, html, Input, Output, State, ctx
import dash_bootstrap_components as dbc
import plotly.express as px
import pandas as pd
import numpy as np
import umap
import hdbscan
import sklearn.feature_extraction.text as text
from dash.exceptions import PreventUpdate
import os
from dotenv import load_dotenv
import helpers
import lancedb
from omeka_s_api_client import OmekaSClient, OmekaSClientError
from lancedb_client import LanceDBManager
# Load .env for credentials
load_dotenv()
_DEFAULT_PARSE_METADATA = (
'dcterms:identifier','dcterms:type','dcterms:title', 'dcterms:description',
'dcterms:creator','dcterms:publisher','dcterms:date','dcterms:spatial',
'dcterms:format','dcterms:provenance','dcterms:subject','dcterms:medium',
'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner'
)
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app.config.suppress_callback_exceptions = True
server = app.server
manager = LanceDBManager()
french_stopwords = text.ENGLISH_STOP_WORDS.union([
"alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon",
"car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans",
"des", "du", "dedans", "dehors", "depuis", "devrait", "doit", "donc", "dos",
"début", "elle", "elles", "en", "encore", "essai", "est", "et", "eu", "fait",
"faites", "fois", "font", "hors", "ici", "il", "ils", "je", "juste", "la", "le",
"les", "leur", "là", "ma", "maintenant", "mais", "mes", "mine", "moins", "mon",
"mot", "même", "ni", "nommés", "notre", "nous", "nouveaux", "ou", "où", "par",
"parce", "parole", "pas", "personnes", "peut", "peu", "pièce", "plupart", "pour",
"pourquoi", "quand", "que", "quel", "quelle", "quelles", "quels", "qui", "sa",
"sans", "ses", "seulement", "si", "sien", "son", "sont", "sous", "soyez", "sujet",
"sur", "ta", "tandis", "tellement", "tels", "tes", "ton", "tous", "tout", "trop",
"très", "tu", "valeur", "voie", "voient", "vont", "votre", "vous", "vu", "ça",
"étaient", "état", "étions", "été", "être"
])
# -------------------- Layout --------------------
app.layout = dbc.Container([
html.H2("🌍 Omeka S UMAP Explorer", className="text-center mt-4"),
html.Hr(),
# Input controls
dbc.Row([
dbc.Col([
html.H5("🔍 From Omeka S"),
dcc.Input(id="api-url", value="https://your-omeka-instance.org", type="text", className="form-control"),
dbc.Button("Load Item Sets", id="load-sets", color="secondary", className="mt-2"),
dcc.Dropdown(id="items-sets-dropdown", placeholder="Select a collection"),
dcc.Input(id="table-name", value="my_table", type="text", className="form-control mt-2", placeholder="New table name"),
dbc.Button("Process Omeka Collection", id="load-data", color="primary", className="mt-2"),
], md=4),
dbc.Col([
html.H5("📁 From LanceDB"),
dbc.Button("Load Existing Tables", id="load-tables", color="info"),
dcc.Dropdown(id="db-tables-dropdown", placeholder="Select an existing table"),
dbc.Button("Display Table", id="load-data-db", color="success", className="mt-2"),
], md=4),
dbc.Col([
html.H5("🔎 Query Tool (coming soon)"),
dbc.Input(placeholder="Type a search query...", type="text", disabled=True),
], md=4),
], className="mb-4"),
# Main plot area and metadata side panel
dbc.Row([
dbc.Col(
dcc.Graph(id="umap-graph", style={"height": "700px"}),
md=8
),
dbc.Col(
html.Div(id="point-details", style={
"padding": "15px",
"borderLeft": "1px solid #ccc",
"height": "700px",
"overflowY": "auto"
}),
md=4
),
]),
# Status/info
html.Div(id="status", className="mt-3"),
dcc.Store(id="omeka-client-config", storage_type="session")
], fluid=True)
# -------------------- Callbacks --------------------
@app.callback(
Output("items-sets-dropdown", "options"),
Output("omeka-client-config", "data"),
Input("load-sets", "n_clicks"),
State("api-url", "value"),
prevent_initial_call=True
)
def load_item_sets(n, base_url):
client = OmekaSClient(base_url, "...", "...", 50)
try:
item_sets = client.list_all_item_sets()
options = [{"label": s.get('dcterms:title', [{}])[0].get('@value', 'N/A'), "value": s["o:id"]} for s in item_sets]
return options, {
"base_url": base_url,
"key_identity": "...",
"key_credential": "...",
"default_per_page": 50
}
except Exception as e:
return dash.no_update, dash.no_update
@app.callback(
Output("db-tables-dropdown", "options"),
Input("load-tables", "n_clicks"),
prevent_initial_call=True
)
def list_tables(n):
return [{"label": t, "value": t} for t in manager.list_tables()]
@app.callback(
Output("umap-graph", "figure"),
Output("status", "children"),
Input("load-data", "n_clicks"), # From Omeka S
Input("load-data-db", "n_clicks"), # From DB table
State("items-sets-dropdown", "value"),
State("omeka-client-config", "data"),
State("table-name", "value"),
State("db-tables-dropdown", "value"),
prevent_initial_call=True
)
def handle_data_loading(n_clicks_omeka, n_clicks_db, item_set_id, client_config, table_name, db_table):
triggered_id = ctx.triggered_id
print(triggered_id)
if triggered_id == "load-data": # Omeka S case
if not client_config:
raise PreventUpdate
client = OmekaSClient(
base_url=client_config["base_url"],
key_identity=client_config["key_identity"],
key_credential=client_config["key_credential"]
)
df_omeka = harvest_omeka_items(client, item_set_id=item_set_id)
items = df_omeka.to_dict(orient="records")
records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items]
df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls')
text_embed = helpers.generate_text_embed(df['text'].tolist())
img_embed = helpers.generate_img_embed(df['images_urls'].tolist())
embeddings = np.concatenate([text_embed, img_embed], axis=1)
df["embeddings"] = embeddings.tolist()
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric="cosine")
umap_embeddings = reducer.fit_transform(embeddings)
df["umap_embeddings"] = umap_embeddings.tolist()
clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
cluster_labels = clusterer.fit_predict(umap_embeddings)
df["Cluster"] = cluster_labels
vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True)
tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist())
top_words = []
for label in sorted(df["Cluster"].unique()):
if label == -1:
top_words.append("Noise")
continue
mask = (df["Cluster"] == label).to_numpy().nonzero()[0]
cluster_docs = tfidf_matrix[mask]
mean_tfidf = cluster_docs.mean(axis=0)
mean_tfidf = np.asarray(mean_tfidf).flatten()
top_indices = mean_tfidf.argsort()[::-1][:5]
terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
top_words.append(", ".join(terms))
cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)}
df["Topic"] = df["Cluster"].map(cluster_name_map)
manager.initialize_table(table_name)
manager.add_entry(table_name, df.to_dict(orient="records"))
elif triggered_id == "load-data-db": # Load existing LanceDB table
if not db_table:
raise PreventUpdate
items = manager.get_content_table(db_table)
df = pd.DataFrame(items)
df = df.dropna(axis=1, how='all')
df = df.fillna('')
#umap_embeddings = np.array(df["umap_embeddings"].tolist())
else:
raise PreventUpdate
# Plotting
return create_umap_plot(df)
@app.callback(
Output("point-details", "children"),
Input("umap-graph", "clickData")
)
def show_point_details(clickData):
if not clickData:
return html.Div("🖱️ Click a point to see more details.", style={"color": "#888"})
img_url, title, desc = clickData["points"][0]["customdata"]
return html.Div([
html.H4(title),
html.Img(src=img_url, style={"maxWidth": "100%", "marginBottom": "10px"}),
html.P(desc or "No description available.")
])
# -------------------- Utility --------------------
def harvest_omeka_items(client, item_set_id=None, per_page=50):
"""
Fetch and parse items from Omeka S.
Args:
client: OmekaSClient instance
item_set_id: ID of the item set to fetch items from (optional)
per_page: Number of items to fetch per page (default: 50)
Returns:
DataFrame containing parsed item data
"""
print("\n--- Fetching and Parsing Multiple Items by colection---")
try:
# Fetch first 5 items
items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page)
print(items_list)
print(f"Fetched {len(items_list)} items.")
parsed_items_list = []
for item_raw in items_list:
if 'o:media' in item_raw:
parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA)
if parsed: # Only add if parsing was successful
# Add media
medias_id = [x["o:id"] for x in item_raw["o:media"]]
medias_list = []
for media_id in medias_id:
media = client.get_media(media_id)
if "image" in media["o:media_type"]:
medias_list.append(media.get('o:original_url'))
if medias_list: # Only append if there are image URLs
parsed["images_urls"] = medias_list
parsed_items_list.append(parsed)
print(f"Successfully parsed {len(parsed_items_list)} items.")
print(f"Successfully parsed {len(parsed_items_list)} items.")
# Note: List columns (like dcterms:title) might need further handling in Pandas
print("\nDataFrame from parsed items:")
return pd.DataFrame(parsed_items_list)
except OmekaSClientError as e:
print(f"Error fetching/parsing multiple items: {e}")
except Exception as e:
print(f"An unexpected error occurred during multi-item parsing: {e}")
def create_umap_plot(df):
coords = np.array(df["umap_embeddings"].tolist())
fig = px.scatter(
df, x=coords[:, 0], y=coords[:, 1],
color="Topic",
custom_data=["images_urls", "Title", "Description"],
hover_data=None,
title="UMAP Projection with HDBSCAN Topics"
)
fig.update_traces(
marker=dict(size=8, line=dict(width=1, color="DarkSlateGrey")),
hovertemplate="<b>%{customdata[1]}</b><br><img src='%{customdata[0]}' height='150'><extra></extra>"
)
fig.update_layout(height=700, margin=dict(t=30, b=30, l=30, r=30))
return fig, f"Loaded {len(df)} items and projected into 2D."
if __name__ == "__main__":
app.run(debug=True, port=7860)
|