Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,16 @@ import gradio as gr
|
|
7 |
scaler = load('scaler_lab4.joblib')
|
8 |
KNN_Regressor = load('knn_lab4.joblib')
|
9 |
|
|
|
10 |
## Building a Fubction for prediction:
|
11 |
|
12 |
def predictPrice(input1, input2, input3, input4, input5, input6, input7, input8):
|
13 |
features = np.array([[input1, input2, input3, input4, input5, input6, input7, input8]])
|
14 |
features_scaled = scaler.transform(features)
|
15 |
prediction = KNN_Regressor.predict(features_scaled)
|
16 |
-
return prediction
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
|
|
21 |
## Buidling inputs and outputs:
|
22 |
|
23 |
input1 = gr.Slider(-124.35, -114.31, step=5, label = "Longitude")
|
@@ -35,4 +34,4 @@ output1 = gr.Textbox(label = "House Value")
|
|
35 |
##title Putting it all together:
|
36 |
|
37 |
gr.Interface(fn=predictPrice, inputs=[input1, input2, input3, input4, input5, input6, input7, input8],
|
38 |
-
outputs=output1).launch(show_error=True)
|
|
|
7 |
scaler = load('scaler_lab4.joblib')
|
8 |
KNN_Regressor = load('knn_lab4.joblib')
|
9 |
|
10 |
+
|
11 |
## Building a Fubction for prediction:
|
12 |
|
13 |
def predictPrice(input1, input2, input3, input4, input5, input6, input7, input8):
|
14 |
features = np.array([[input1, input2, input3, input4, input5, input6, input7, input8]])
|
15 |
features_scaled = scaler.transform(features)
|
16 |
prediction = KNN_Regressor.predict(features_scaled)
|
17 |
+
return prediction.item()
|
|
|
|
|
|
|
18 |
|
19 |
+
|
20 |
## Buidling inputs and outputs:
|
21 |
|
22 |
input1 = gr.Slider(-124.35, -114.31, step=5, label = "Longitude")
|
|
|
34 |
##title Putting it all together:
|
35 |
|
36 |
gr.Interface(fn=predictPrice, inputs=[input1, input2, input3, input4, input5, input6, input7, input8],
|
37 |
+
outputs=output1).launch(show_error=True, share=True)
|